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o

PAQS is a reliable, user-friendly, and open-source Physical Optics Propagation code that integrates an
implementation of Fourier optics. It employs the Fresnel approximation for efficient and accurate optical
system simulations.

By including a flexible configuration file and paraxial ray-tracing, PAOS seamlessly facilitates the study
of various optical systems, including non-axial symmetric ones, as long as the Fresnel approximation
remains valid.

This guide will walk you through the PAOS code with examples and descriptions of the main algorithms.

Warning: This documentation is not completed yet. If you find any issue or difficulty, please contact
the developers for help.

Important: A dedicated paper has been submitted and the related information will be published soon.

Caution: In case of inconsistency between the documentation and the paper, always assume that
the paper is correct.

Hint: Please note that PAOS does not implement an automatic updating system. Be always sure that
you are using the most updated version by monitoring GitHub.

Want to install it? Head here: Installation
Want to jump into the PAOS program? Head here: User guide
Want to know more about the code? Head here: API guide

Want to collaborate? Head here: Developer guide

Curious about the license? Head here: License

Curious about the project history? Head here: Changelog
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Chapter 1

User guide

This guide covers the general installation, as well as the use of PAOS as a standalone program and as a
library.

1.1 Introduction

Accurate assessment of the optical performance of advanced telescopes and imaging systems for astrophys-
ical applications is essential to achieve an optimal balance between optical quality, system complexity,
costs, and risks.

PAQOS is an open-source code implementing physical optics propagation (POP) in Fresnel approximation
and paraxial ray tracing to analyze complex waveform propagation through both generic and off-axes
optical systems (see ABCD description and POP description), enabling the generation of realistic Point
Spread Functions across various wavelengths and focal planes.

Developed using a Python 3 stack, PAOS includes an installer, documented examples, and this compre-
hensive guide. It improves upon other POP codes offering extensive customization options and the liberty
to access, utilize, and adapt the software library to the user’s application.

With a generic input system and a built-in Graphical User Interface (see Input system), PAOS ensures
seamless user interaction and facilitates simulations.

The versatility of PAOS enables its application to a wide array of optical systems, extending beyond
its initial use case. PAOS presents a fast, modern, and reliable POP simulation tool for the scientific
community, enhancing the assessment of optical performance in various optical systems and making
advanced simulations more accessible and user-friendly.

1.2 Installation

1.2.1 Install with pip

The PAOS package is hosted on PyPI repository. You can install it by

[pip install paos }




PAOS Manual, 1.0.3.postl

1.2.2 Install from git

You can clone PAOS from our main git repository

[git clone https://github.com/arielmission-space/PAO0S.git }

Move into the PAOS folder

{cd /your_path/PAOS ]

Then, just do

[pip install . }

To test for correct setup you can do

[python —-c "import paos" J

If no errors appeared then it was successfully installed.

Additionally the PAOS program should now be available in the command line

= )

and the PAOS GUI (see GUI editor) can be accessed calling

[paosgui }

1.2.3 Uninstall PAOS

PAQS is installed in your system as a standard python package: you can uninstall it from your Environment
as

[pip uninstall paos ]

1.2.4 Update PAOS

If you have installed PAOS using Pip, now you can update the package simply as

[pip install paos --upgrade }

If you have installed PAOS from GitHub, you can download or pull a newer version of PAOS over the old
one, replacing all modified data.

Then you have to place yourself inside the installation directory with the console

[cd /your_path/PAQOS J

Now you can update PAOS simply as

[pip install . --upgrade }

or simply

4 Chapter 1. User guide
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[pip install . }

1.2.5 Modify PAGS

You can modify PAOS main code, editing as you prefer, but in order to make the changes effective

[pip install . --upgrade

or simply

[p ip install .

To produce new PAOS functionalities and contribute to the code, please see Developer guide.

1.3 Quick start

Short explanation on how to quickly run PAOS and have its output stored in a convenient file.

1.3.1 Running PAOS from terminal

The quickest way to run PAOS is from terminal.

Run it with the help flag to read the available options:

[$ paos --help

The main command line flags are listed in Table 1.1.

Table 1.1 — Main command line flags

flag description

-h, —-help show this help message and exit

-c, --configuration Input configuration file to pass

-0, ——output Output file

-p, —-plot Save output plots

-n, ——nThreads Number of threads for parallel processing
-d, -—debug Debug mode screen

-1, --logger Store the log output on file

Where the configuration file shall be an .ini file and the output file an .hS5 file (see later in The output
file). -n must be followed by an integer. To activate -p, -d and -l no argument is needed.

Note: PAOS implements the log submodule which makes use of the python standard module logging for
output information. Top-level details of the calculation are output at level logging. INFO, while details of
the propagation through each optical plane and debugging messages are printed at level logging. DEBUG.
The latter can be accessed by setting the flag -d, as explained above. Set the flag - to redirect the logger
output to a .log textfile.

Other option flags may be given to run specific simulations, as detailed in Table 1.2.

1.3. Quick start 5
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Table 1.2 — Other option flags

flag description
-wfe, ——wfe_simulation A list with wfe realization file and column to simulate an aber-
ration

To have a lighter output please use the option flags listed in Table 1.3.

Table 1.3 — Lighter output flags

flag description
-keys, ——-keys_to_keep A list with the output dictionary keys to save
-lo, --1light_output Save only at last optical surface

To activate -lo no argument is needed.

1.3.2 The output file

PAQS stores its main output product to a HDF5 file (extension is .hJ or .hdf5) such as that shown in Fig.
1.1. To open it, please choose your favourite viewer (e.g. HDFView, HDFCompass) or API (e.g. Cpp,
FORTRAN and Python).

File Go View Window Help

P>

next list icon

Name Kind
/ ™ 1.95 HDF5 Group
™39 HDF5 Group

Ee— @ info HDF5 Group

HDF5 Group

3items

Fig. 1.1 — Main PAOS output file

For more information on how to produce a similar output file, see Saving results.

1.3.3 The baseline plot

As part of the output, PAOS can plot the squared amplitude of the complex wavefront at a given point
along the optical path (the focal plane in the case shown in Fig. 1.2).

The title of the plot features the optical surface name, the focal number, the Gaussian beam width, the
simulation wavelength and the total optical throughput that reaches the surface.

6 Chapter 1. User guide
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Fig. 1.2 — Baseline PAOS plot
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The color scale can be either linear or logarithmic. The x and y axes are in physical units, e.g. micron.
For reference, black rings mark the first five zeros of the circular Airy function.

For more information on how to produce a similar plot, see Plotting results.

1.4 Input system

PAQS has a generic input system to be used by anyone expert in Computer Aided Design (CAD).
Its two pillars are

1.The Configuration file
A .ini configuration file with structure similar to that of Zemax OpticStudio ©;
2.The GUI editor
A GUI to dynamically modify the configuration file and launch instant POP simulations

This structure allows the user to write configuration files from scratch or edit existing ones in a dynamic
way, and to launch automatized POP simulations that reflect the edits without requiring advanced
programming skills.

From a broad perspective, this input system has two advantages:

1.It can be used to design and test any optical system with relative ease.
Outside Ariel, PAOS is currently used to simulate the optical performance of the stratospheric
balloon-borne experiment EXCITE.

Tip: The interested reader may refer to the section Plotting results to see an example of
PAQOS results for EXCITE.

2. It helped in validating the PAOS code against existing simulators.

1.4.1 Configuration file

The configuration file is an .ini file structured into four different sections:

1.DEFAULT
Optional section, not used
General
Wavelengths
Fields

Lens zx

Uk W

Note: PAOS defines units as follows:

1. Lens units: meters
2. Angles units: degrees
3. Wavelength units: micron

1.4.1.1 General

Section describing the general simulation parameters and PAOS units

8 Chapter 1. User guide
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Table 1.4 — General
keyword type description
project string A string defining the project name
version string Project version (e.g. 1.0)
grid__size int Grid size for simulation
Must be in [64, 128, 512, 1024]
zoom int Zoom size
Must be in [1, 2, 4, 8, 16]
lens_ unit string Unit of lenses
Must be ‘m’
tambient float Ambient temperature in Celsius
pambient float Ambient pressure in atmospheres
Below we report a snapshot of this section from the Ariel AIRS CH1 configuration file
project=Ariel AIRS CH1
Comment=ARIEL-CEA-PL-ML-002 v3.2
version=1.0
grid size=512
zoom=4
lens unit=m
Tambient=-223.0
Pambient=0.0
Fig. 1.3 — General
1.4.1.2 Wavelengths
Section listing the wavelengths to simulate (preferably in increasing order)
Table 1.5 — Wavelengths
keyword type description
wl float First wavelength
w2 float Second wavelength
Below we report a snapshot of this section from the Ariel AIRS CHI1 configuration file
1.4.1.3 Fields
Section listing the input fields to simulate
1.4. Input system 9
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Fig. 1.4 — Wavelengths

Table 1.6 — Fields

keyword type description
f1 float, float Field 1:

sagittal (x) and tangential (y) angle
2 float, float Field 2:

sagittal (x) and tangential (y) angle

Below we report a snapshot of this section from the Ariel ATRS CH1 configuration file

Fig. 1.5 — Fields

1.4.1.4 Lens_xx

Lens data sections describing how to define the different optical surfaces (INIT, Coordinate Break,
Standard, Paraxial Lens, ABCD and Zernike) and their required parameters.

Table 1.7 — Lens  xx

Surface- Com-  Radius Thick- Mate- Save Ignore  Stop aper- Parl..N
Type ment ness rial ture
INIT string, None None None None None None list None
this
sur-
face
name
Coordi- . None  float None Bool Bool Bool list None
nate Break
Standard - float float MIR- Bool Bool Bool list None
ROR,
others
Paraxial e None  float None Bool Bool Bool list Parl = focal
Lens length (float)

continues on next page

10 Chapter 1. User guide
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Table 1.7 — continued from previous page

Surface- Com-  Radius Thick- Mate- Save Ignore  Stop aper- Parl..N
Type ment ness rial ture
ABCD Parl..4 = Ax,
Bx, Cx, Dx
(sagittal)
Par5..8 = Ay,
By, Cy, Dy (tan-
gential)
Zernike Parl = wave-
in  addi- length (in mi-
tion to cron)
standard Par2 = order-
param- ing, can be stan-
eters dard, ansi, noll,
defines: fringe
Zindex: Par3 = Normal-
polyno- isation, can be
mial index True or False
starting Par4 = Radius
from 0 of support aper-
Z:  coefhi- ture of the poly-
cients in nomial
units  of Parb5 = origin,
wave can be x (coun-
terclockwise
positive  from
X axis) or y
(clockwise pos-
itive from 'y
axis)
Note:

1. Set the Ignore flag to 1 to skip the surface
2. Set the Stop flag to 1 to make the surface a Stop (see Stops)
3. Set the Save flat to 1 to later save the output for the surface

Note: The aperture keyword is a list with the following format:

e aperture = shape type, wx, wy, xc, yc

o shape: either ‘elliptical’ or ‘rectangular’

e type: either ‘aperture’ or ‘obscuration’

e wx, wy: semi-axis of elliptical shapes, or full length of rectangular shape sides
e xc, yc: coordinates of aperture centre

Example: aperture = elliptical aperture, 0.5, 0.3, 0.0, 0.0

Below we report a snapshot of the first lens data section from the Ariel AIRS CHI1 configuration file

1.4. Input system 11



PAOS Manual, 1.0.3.postl

SurfaceType=INIT
Comment=input beam init
Radius=

Thickness=

Material=

Parl=

Pard=

Par3=

Pard=

Save=False

Ignore=False

aperture=elliptical aperture, 0.55,0.55,0.0,0.0

Fig. 1.6 — Lens_xx

1.4.1.5 Parse configuration file
PAOS implements the method parse_config that parses the .ini configuration file, prepares the simulation

run and returns the simulation parameters and the optical chain. This method can be called as in the
example below.

Example Code example to parse a PAOS configuration file.

from paos.core.parseConfig import parse_config
pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config('path/to/ini/
%flle ! )

1.4.2 GUI editor

PAOS implements a GUI editor that allows to dynamically edit and modify the configuration file and to
launch POP simulations. This makes it effectively the PAOS front-end. To achieve this, PADS uses the
PySimpleGui package, a Python package that aims at “bridging the GUI gap between software developers
and end users”.

The quickest way to run the PAOS GUI is from terminal.
Run it with the help flag to read the available options:

[$ paosgui --help

Table 1.8 — GUI command line flags

12 Chapter 1. User guide
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flag description

-h, —-help show this help message and exit
-c, ——configuration Input configuration file to pass
-0, ——output Output file path

-d, --debug Debug mode screen

-1, --logger Store the log output on file

Where the configuration file shall be an .ini file (see Configuration file). If no configuration file is passed
it defaults to the configuration template template.ini file. To activate -d and -l no argument is needed.

The GUI editor then opens and displays a GUI window with a standard Menu (Open, Save, Save As,
Global Settings, Fxit) and a series of Tabs:

1. General Tab

2. Fields Tab

3.Lens data Tab
Zernike Tab

4. Launcher Tab

5. Monte Carlo Tab

6. Info Tab

On the bottom of the GUI window, there are five Buttons to perform several actions:

e Submit:
Submits all values from the GUI window in a flat dictionary
e Show Dict:
Shows the GUI window values in a nested dictionary, organized into the same sections as the
configuration file
e Copy to clipboard:
Copied the nested dictionary to the local keyboard
e Save:
Saves the GUI window to the configuration file upon exiting
o Exit:
Exits the GUI window

The GUI window defines also a right-click Menu with the following options:

e Nothing:

Does nothing
e Version:

Displays the current Python, tkinter and PySimpleGUI versions
o Exit:

Exits the GUI window

1.4.2.1 General Tab

This Tab opens upon starting the GUI. Its purpose is to setup the main simulation parameters.
It contains two Frames:

e General Setup
Displays the general simulation parameters and PAOS units, as defined in General. The contents
can be altered as necessary, safe if the the cells are disabled.

e Wavelength Setup

1.4. Input system 13
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Lists the wavelengths to simulate. This list can be altered by editing the wavelengths. The user
can use the Buttons in the Wavelengths Actions Frame to modify the list content by adding
new wavelength rows, pasting a list of wavelengths from the local clipboard (comma-separated or
\n-separated) and can also be sort the list to increasing order.

Below we report a snapshot of this Tab.

PAOS Configuration GUI

Eile Help

Configuration Tabs
[General Fields|Lens Data|Launcher |Monte Carlo|Info

LGeneral sSetup

Pro ject Mame: Ariel TA, Case09_FoY¥Inly_Zernike_NormR10_3000nm.int. ground test

Comment :

Yersion:

Grid Size:

Zoom:

Lens unit:

fingles unit:

Havelengths unit:

T ambient:

unit:

T
P ambient:
p

unit:

lavelength Setup

Wavelength

Add a wavelength: Add 7.8

Paste wavelengths: Paste

Sort wavelengths: Sort

Submit || Show Dict | Copy to clipboard || Save | Exit

Fig. 1.7 — General Tab

1.4.2.2 Fields Tab

This GUI Tab describes the input fields to simulate.
In the Fields Setup Frame it lists the input fields, as defined in Fields.

The fields contents can be edited as necessary and new fields can be added by clicking on the Add Field
Button in the Fields Actions Frame.
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Note: While more than one field can be listed in this Tab, the current version of PAOS only supports
simulating one field at a time

Below we report a snapshot of this Tab.

PAOS Configuration GUI

Eile Help

Configuration Tabs
|.Fields Lens Data|Launcher |Monte Carlo Info

Fields Setup

Add a field: Add Field

Fig. 1.8 — Fields Tab

1.4.2.3 Lens data Tab

This GUI Tab contains the list of the optical surfaces describing the optical chain to simulate, as defined
in Lens xx.

This information is organized in the Lens Data Setup Frame, whose structure tries to mimic that of
Zemax OpticStudio ©. The columns are arranged as explained in Lens zz, with horizontal and vertical
scrollbars to allow any movement.

The contents of each row can be edited as necessary and new surfaces can be added by clicking on the
Add Surface Button in the Lens Data Actions Frame.

For each row, columns are automatically enabled/disabled according to the surface type.

Below we report a snapshot of this Tab.

Tip: The column headers for Parl..N change according to the cursor position in the Table.

Tip: It is possible to move the cursor with arrow keys.

Tip: To see/edit the contents of the aperture column, click on the Button with the yellow triangle.
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PAOS Configuration GUI

Eile Help

Configuration Tabs
General Fields [EGENIERE] -Launcher _Monte Carlo -Inf‘o

tup

SurfaceType Comment. Radius Thickness Material Ignore

input beam init = =

_ISave I Ignore

_I Save _I Ignore _1 Stop
-2.319432 -1.05 MIRROR vl Save _I Ignore vl Stop
—
-0.239141 1.331249 MIRROR vl Save _I Ignore _I Stop
—
infinity 0.2548485 vl Save _I Ignore _1 Stop
-0.509697 MIRROR vl Save _I Ignore _I Stop
_| Save _I Ignore I Stop

infinity -0.201646 I Save I Ignore I Stop

_I Save I Ignore I Stop

—
infinity MIRROR I Save I Ignore _IStop

_I Save _I Ignore _I Stop

infinity vl Save _I Ignore _1 Stop

I Save _I Ignore _I Stop

v Save _I Ignore _I Stop

infinity _I Ignore _1 Stop

Add Surface

Submit | Show Dict || Copy to clipboard | Save | Exit

Fig. 1.9 — Lens data Tab

1.4.2.4 Zernike Tab

This GUI Tab can be accessed from the Lens Data Tab, by selecting a Zernike surface in the Dropdown
menu from the SurfaceType column. Then, a small window appears asking to proceed with the insertion
or modification of Zernike coefficients. A positive answer opens the Zernike Tab.

It contains two Frames:

e Parameters
Displays the Zernike parameters as defined in the Lens Data Tab and serves as a reminder to the
user. It is not enabled to be modified, which needs to be done beforehand in the Lens Data Tab.
e Zernike Setup
Contains a Table that lists the Zernike polynomial index (“Zindex”), the Zernike coefficients (“Z”),
and the azimuthal (“m”) and radial (“n”) polynomial orders, according to the specified Zernike
ordering (one of standard, ansi, fringe and noll). Only the “Z” column is enabled to be modified as
required by the user.
The user can use the Buttons in the Zernike Actions Frame to modify the Table content by adding
new rows, completing an unclosed Zernike radial order or adding a new one (available only if using
standard or ansi ordering), and by pasting a list of Zernike coefficients from the local clipboard
(comma-separated or \n-separated) in a cell from the “Z” column to automatically create and fill
all necessary rows. The other columns will update accordingly.

Below we report a snapshot of this Tab.

1.4.2.5 Launcher Tab

This GUI Tab is designed to make preliminary, fast simulations to test a new configuration file or to
simulate the propagation for a particular wavelength at a time.

It contains three Frames:
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Zernike window
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Fig. 1.10 — Zernike Tab
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¢ Select inputs
Allows to select the simulation wavelength and field. By selecting a new wavelength or field, the
outputs of this Tab are reset, except for the raytrace output if the field has not changed.

¢ Run and Save
Contains Buttons to call PAOS methods to run the simulation.
The Raytrace Button runs a diagnostic ray-trace of the optical system, producing an output that is
displayed in the Multiline element below it. This output can be saved to a text file by using the
Save raytrace Button.
The POP Button runs the wavefront propagation, producing an output dictionary that can be saved
to a binary (.hdf5) file using the Save POP Button.
The Plot Button plots the squared amplitude of the wavefront with the selected zoom factor at
the selected surface from the Dropdown menu. The plot scale can be selected to be logarithmic or
linear. Use the Save Plot Button to save the produced plot.

e Display
Allows to see the simulation output plot. To display it, use the Display plot Button.

Below we report a snapshot of this Tab.

PAOS Configuration GUI

Eile telp

Configuration Tabs

Lens Data [RAENSS Honte Carlo Info

1
Select. Select field
uavelength

Run and e Display
Run a diagnostic raytrace

Raytrace Display plot

S16 | F#12.05 | w23.01micron | A3.00um | P100%

X-sec view 2D view

-
- exit pupil
= d rad 00mn v
- Lt B 22605 rad x: 0.000mn Us:
- THAGE_PLANE i 0.018mn ut: 6,0225-05 tad xi 0,000mn us: 0,0002+00 Tad

h
—— Airy X-cut
Airy Y-cut

Save raytrace

Cross-sections

Run the POP: POP

Save the POP output: Save POP

Select surface zoom:

Select surface number : 16 W
Select plot scale: log scale i Qg N

Plot surface: Plot p micron

Save the Plots Save Plot micron

Submit | Show Dict || Copy to clipboard | Save | Exit

Fig. 1.11 — Launcher Tab

1.4.2.6 Monte Carlo Tab

This GUI Tab is designed to provide support for specific Monte Carlo simulations.
Two kinds of such simulations are currently supported:

1. Running the optical system at all provided wavelengths at once.
2. Running the optical system with different aberration realizations.

Therefore, the Tab contains two (collapsible) Frames, each with a layout similar to Launcher Tab:

e MC Wavelengths
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Provides GUI support for running all provided wavelengths using parallel execution.

The user can select a field in the Select Inputs Frame, a number of parallel jobs, and then run the
propagation by clicking on the POP Button. The simulation output can then be saved to a binary
(.hdf5) file using the Save POP Button.

The Plot Button plots the squared amplitude of the wavefront for the selected range of simulations,
which is automatically estimated from the simulation output but can be customized as needed. The
plots can be customized by selecting the zoom factor, the surface to plot and the plot scale. Use
the Save Plot Button to save the produced plots. To uniquely label the plots to be saved, please
change the default figure prefix.

To display the plots, use the Display plot Button and the Slider element to see all plotted
instances.

Below we report a snapshot of this Frame.

PAOS Configuration GUI

Configuration Tabs

Display

Displ Lot
Number of parallel jobs: 1splay pLo

Run the multi-ul POP: S16 | F#12.05 | w59.82micron | A7.80um | P99%

Save the POP output:

X-sec view 2D view

Range to plot:
Select surface zoom:

Select plot
Plot surface:

Yl
A
A
=/ ‘H‘ \‘\‘ \
t “H‘ ‘ll‘ “‘ Ay
I — Airy xcut I

Figure prefix:

Save the Plots Save Plot !

micron

| Airy Y-cut | |

Cross-sections

— Xcut |
— Y-cut

—-- 45°-cut

=== 135"-cut

micron

micron

Submit | Show Dict || Copy to clipboard | Save | Exit

Fig. 1.12 — Monte Carlo Tab (1)

e MC Wavelengths
Provides GUI support for running the propagation with different aberration realizations using
parallel execution.
The user can select the wavelength and field in the Select Inputs Frame.
The .csv file with the aberration realizations can be imported using the Import wfe Button. To
indicate the unit of the Zernike coefficients (r.m.s.), use the Dropdown menu below it.
After this, select the number of parallel jobs, indicate the index of the Zernike surface (the
corresponding row in the Lens data Tab and run the propagation using the POP Button. The
simulation output can then be saved to a binary (.hdf5) file using the Save POP Button.
To plot, save and display the simulation output, please refer to the preceding paragraph MC
Wavelengths.
Below we report a snapshot of this Frame.
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PAOS Configuration GUI

Configurat. abs

1
Select field
uavelength

Run and Save Display

Display plot

TImport Havefront error table: | Import ufe

Unit of Zernike coefficsenta: S16 | F#12.05 | w23.01micron | A3.00um | PL00%

Number of parallel jobs: X-sec view 2D view
Index of Zernike surface:

Run the POP for each wfe: POP
Save the POP output: Save POP

1/

fq

\j !

( |

v ]
1

i

— Airy X-cut
Airy Y-cut
X-cut

Y-cut
Figure prefix: lot. 45° -cut

Range to plot:
Select surface zoom:

micron

Select surface number:

Select plot scale: og scale |

Cross-sections

Plot surface: Plot

Save the Plots Save Plot

-100 0 100
micron

micron

Submit | Show Dict || Copy to clipboard | Save

Fig. 1.13 — Monte Carlo Tab (2)

1.4.2.7 Info Tab

This GUI Tab contains information about the PAOS creators and the GUI.
It displays:

e The author names

e The PAOS version

e The Github repository

e The PySimpleGui version and release

Below we report a snapshot of this Tab.

PAOS Configuration GUI
Eile Help

Configuration Tabs

General |Fields|Lens Data|Launcher |Monte Carlo
GUI Info
Credits: Andrea Bocchieri, Enzo Pascale. Lorenzo Y. Mugnai

PAOS version: 0.0.4

Github Repo:

PySimpleGui version: 4.55.1 Released 7-Nov-2021

Fig. 1.14 — Info Tab
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1.5 ABCD description

PAOS implements the paraxial theory described in Lawrence et al., Applied Optics and Optical Engineering,
Volume XTI (1992).

In PAQS, this is handled by the classes ABCD and WFOQ (see POP description).
1.5.1 Paraxial region
Following e.g. Smith, Modern Optical Engineering, Third Edition (2000), the paraxial region of an optical

system is a thin threadlike region about the optical axis where all the slope angles and the angles of
incidence and refraction may be set equal to their sines and tangents.

1.5.2 Optical coordinates

The PAOS code implementation assumes optical coordinates as defined in Fig. 1.15.

YA

~Y

Fig. 1.15 — Optical coordinates definition

where

1. z is the coordinate of the object (< 0 in the diagram)

2. zy is the coordinate of the image (> 0 in the diagram)

3. uy is the slope, i.e. the tangent of the angle = angle in paraxial approximation; u; > 0 in the
diagram.

4. uo is the slope, i.e. the tangent of the angle = angle in paraxial approximation; us < 0 in the
diagram.

5. y is the coordinate where the rays intersect the thin lens (coloured in red in the diagram).

The (thin) lens equation is

Ty = (1.1)
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where f is the lens focal length: f > 0 causes the beam to be more convergent, while f < 0 causes the
beam to be more divergent.

The tangential plane is the YZ plane and the sagittal plane is the XZ plane.
1.5.3 Ray tracing
Paraxial ray tracing in the tangential plane (YZ) can be done by defining the vector v; = (y, u,) which

describes a ray propagating in the tangential plane. Paraxial ray tracing can be done using ABCD
matrices (see later in Optical system equivalent).

Note: In the sagittal plane, the same equation apply, modified when necessary when cylindrical
symmetry is violated. The relevant vector is vz = (z, uy).

PAOS implements the function raytrace to perform a diagnostic Paraxial ray-tracing of an optical system,
given the input fields and the optical chain. This function then prints the ray positions and slopes in the
tangential and sagittal planes for each surface of the optical chain.

Several Python codes exist that can implement a fully fledged ray-tracing. In a next PAOS version we
will add support for using one of such codes as an external library to be able to get the expected map of
aberrations produced by the realistic elements of the Ariel optical chain (e.g. mirrors)

1.5.3.1 Example

Code example to call raytrace, provided you already have the optical chain (if not, back to Parse
configuration file).

from paos.core.raytrace import raytrace
raytrace(field={'us': 0.0, 'ut': 0.0}, opt_chain=opt_chains[0])

['S02 - LOS tilt y: 0.000mm ut: 1.745e-03 rad x: 0.000mm us: 0.000e+00 rad',
'S03 - Move to M1 y:500.000mm ut: 1.745e-03 rad x: 0.000mm us: 0.000e+00 rad',
'S04 - M1 y: 49.136mm ut: 4.294e-01 rad x: 0.000mm us: 0.000e+00 rad',
'S05 - M2 y: 24.559mm ut:-1.846e-02 rad x: 0.000mm us: 0.000e+00 rad',
'S06 - FOCUS y: 19.855mm ut:-1.846e-02 rad x: 0.000mm us: 0.000e+00 rad',
'S07 - M3 y: 19.855mm ut: 9.637e-02 rad x: 0.000mm us: 0.000e+00 rad',
'S08 - Ray Centering y: -0.018mm ut:-6.050e-05 rad x: 0.000mm us: 0.000e+00 rad',
'S09 - Move to M4 y: —-0.006mm ut:-6.050e-05 rad x: 0.000mm us: 0.000e+00 rad',
'S10 - x tilt - M4 y: -0.009mm ut:-1.124e+00 rad x: 0.000mm us: 0.000e+00 rad',
'S11 - M4 y: —-0.009mm ut: 1.124e+00 rad x: 0.000mm us: 0.000e+00 rad',
'S12 - x tilt - M4 y: 0.000mm ut: 6.050e-05 rad x: 0.000mm us: 0.000e+00 rad',
'S13 - exit pupil y: 0.000mm ut: 6.050e-05 rad x: 0.000mm us: 0.000e+00 rad',
'S14 - 71 y: 0.000mm ut: 6.050e-05 rad x: 0.000mm us: 0.000e+00 rad',
'S15 - L1 y: 0.015mm ut: 6.022e-05 rad x: 0.000mm us: 0.000e+00 rad',
'S16 - IMAGE_PLANE y: 0.015mm ut: 6.022e-05 rad x: 0.000mm us: 0.000e+00 rad']
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1.5.4 Propagation

Either in free space or in a refractive medium, propagation over a distance t (positive left — right) is
v\ _ (L tY () _+~(n

Code example to initialize ABCD to propagate a light ray over a thickness ¢ = 50.0 mm.

given by

1.5.4.1 Example

from paos.classes.abcd import ABCD
thickness = 50.0 # mm

abcd = ABCD(thickness=thickness)
print (abcd.ABCD)

1.5.5 Thin lens

A thin lens changes the slope angle and this is given by

| (=)= (o D)) -2 (2)

where & = 7 is the lens optical power.

1.5.5.1 Example

Code example to initialize ABCD to simulate the effect of a thin lens with radius of curvature R = 20.0 mm
on a light ray.

from paos.classes.abcd import ABCD
radius = 20.0 # mm

abcd = ABCD(curvature=1.0/radius)
print (abcd.ABCD)

1.5.6 Dioptre

When light propagating from a medium with refractive index n; enters in a dioptre of refractive index nao,

the slope varies as
1 0 .
2y o) () =D (™ (1.4)
u9 T2 ns (/5] U1
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with the dioptre power & = , where R is the dioptre radius of curvature.

na2—nj
R

Note: R > 0 if the centre of curvature is at the right of the dioptre and R < 0 if at the left.

1.5.6.1 Example

Code example to initialize ABCD to simulate the effect of a dioptre with radius of curvature R = 20.0 mm
that causes a change of medium from n; = 1.0 to ny = 1.25 on a light ray.

from paos.classes.abcd import ABCD

nl, n2 = 1.0, 1.25

radius = 20.0 # mm

abcd = ABCD(curvature = 1.0/radius, nl = nl, n2 = n2)
print (abcd.ABCD)

[[ 1. 0. 1
[-0.01 0.8 1]

1.5.7 Medium change

The limiting case of a dioptre with R — oo represents a change of medium.

y2y (1 0 Yy _ o (Y
()= o) () =7 (%)

Code example to initialize 4ABCD to simulate the effect of a change of medium from ny = 1.0 to no = 1.25

1.5.7.1 Example

on a light ray.

from paos.classes.abcd import ABCD
nl, n2 = 1.0, 1.25

abcd = ABCD(nl1 = nl1, n2 = n2)
print (abcd.ABCD)

[[1. 0.1
0. 0.8]]

1.5.8 Thick lens

A real (thick) lens is modelled as

(3/2) = D,TD, <y1> (1.6)
u9 (5%

i.e. propagation through the dioptre D, (first encountered by the ray), then a propagation in the medium,
followed by the exit dioptre Dy,.
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Note: When the thickness of the dioptre, t, is negligible and can be set to zero, this gives back the thin
lens ABCD matrix.

Note: If a dioptre has R — oo, this gives a plano-concave or plano-convex lens, depending on the
curvature of the other dioptre.

1.5.8.1 Example

Code example to initialize ABCD to simulate the effect of a thick lens on a light ray. The lens is £, = 5.0 mm
thick and is plano-convex, i.e. the first dioptre has R = oo and the second has R = —20.0 mm, causing
the beam to converge. The index of refraction in object space and in image space is that of free space
Nos = Nis = 1.0, while the lens medium has n; = 1.25.

import numpy as np
from paos.classes.abcd import ABCD

radiusl, radius2 = np.inf, -20.0 # mm

nos, nl, nis=1.0, 1.25, 1.0

center_thickness = 5.0

abcd = ABCD(curvature = 1.0/radiusl, nl = n_os, n2 = n_1)

abcd = ABCD(thickness = center_thickness) * abcd

abcd = ABCD(curvature 1.0/radius2, nl = n 1, n2 = n_is) * abcd
print (abcd.ABCD)

([ 1. 4. ]
[-0.0125 0.95 1]

You can now print the thick lens effective focal length as

[print (abcd.f_eff)

[80.0

Notice how in this case the resulting f.;; does not depend on 2.

1.5.9 Magnification

A magnification is modelled as

()= (5 o) = () 0

Code example to initialize 4BCD to simulate the effect of a magnification M = 2.0 on a light ray.

1.5.9.1 Example
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from paos.classes.abcd import ABCD
abcd = ABCD(M=2.0)
print (abcd.ABCD)

[[2. 0.1
[0. 0.5]]
1.5.10 Prism

The prism changes both the slope and the magnification. Following J. Taché, “Ray matrices for tilted
interfaces in laser resonators,” Appl. Opt. 26, 427-429 (1987) we report the ABCD matrices for the
tangential and sagittal transfer:

. (zzzéz:z o )) () (zzzézii 0 )) i
ncos cos :
0 605(043) 0 1 0 ncos (012)

L
P, = (é 7{) (1.9)

where n is the refractive index of the prism, L is the geometrical path length of the prism, and the angles
0; are as described in Fig.2 from the article, reproduced in Fig. 1.16.

After some algebra, the ABCD matrix for the tangential transfer can be rewritten as:

A B
P, = (C D) (1.10)

where

(1.11)

1.5.10.1 Example

Code example to initialize ABCD to simulate the effect of a prism on a collimated light ray. The prism is
t = 2.0 mm thick and has a refractive index of n, = 1.5. The prism angles 0; are selected in accordance
with the ray propagation in Fig. 1.16.

import numpy as np
from paos.classes.abcd import ABCD

thickness = 2.0e-3 # m
n=1.5

theta_1 = np.deg2rad(60.0)

(continues on next page)
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Fig. 1.16 — Ray propagation through a prism
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(continued from previous page)

theta_2 = np.deg2rad(-30.0)

theta_3 = np.deg2rad(20.0)
theta_4 = np.deg2rad(-30.0)
A = np.cos(theta_2) * np.cos(theta_4) / (np.cos(theta_1) * np.cos(theta_3))

B = thickness * np.cos(theta_1) * np.cos(theta_4) / (up.cos(theta_2) * np.cos(theta_
-3)) / n

C=20.0

D=1.0/ A

abcdt = ABCD()

abcdt.ABCD = np.array([[A, B], [C, DI1)

abcds = ABCD()

abcds.ABCD = np.array([[1, thickness / n], [0, 1]1])

print (abcdt.ABCD)
print (abcds.ABCD)

[[1.59626666e+00 7.09451848e-04]
[0.00000000e+00 6.26461747e-01]1]
[[1. 0.00133333]
[0. 1. 1]

1.5.11 Optical system equivalent

The ABCD matrix method is a convenient way of treating an arbitrary optical system in the paraxial
approximation. This method is used to describe the paraxial behavior, as well as the Gaussian beam
properties and the general diffraction behaviour.

Any optical system can be considered a black box described by an effective ABCD matrix. This black
box and its matrix can be decomposed into four, non-commuting elementary operations (primitives):

1. magnification change

2. change of refractive index

3. thin lens

4. translation of distance (thickness)

PAOS adopts the following factorization:

A B 1t 1 0) (1 0 M 0 P
@ 5)=(0 ) D ) (3 ) =m0

where the four free parameters t, ®, nj/ng, M are, respectively, the effective thickness, power, refractive
index ratio, and magnification. Not to be confused with thickness, power, refractive index ratio, and
magnification of the optical system under study and its components.

All diffraction propagation effects occur in the single propagation step of distance t. Only this step
requires any substantial computation time.
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The parameters are estimated as follows:

AD — BC
M =
D

nl/ng =MD
B (1.13)

t=—=

D

C

d—___

M

With these definitions, the effective focal length is
— (1.14)
eff — dM :

1.5.11.1 Example

Code example to initialize ABCD to simulate an optical system equivalent for a magnification M = 2.0, a
change of medium from n; = 1.0 to no = 1.25, a thin lens with radius of curvature R = 20.0 mm, and a
propagation over a thickness ¢ = 5.0 mm.

from paos.classes.abcd import ABCD

radius = 20.0 # mm

nl, n2 = 1.0, 1.25
thickness = 5.0 # mm
magnification = 2.0

abcd = ABCD(thickness = thickness, curvature = 1.0/radius, nl = nl, n2 = n2, M =,
—magnification)
print (abcd.ABCD)

(C1.9 2. 1
[-0.02 0.4 1]

1.5.12 Thick lens equivalent

A thick lens can be implemented as two spherical surfaces separated by some distance, and a medium
change.

The ABCD matrix is

A B . 1 0 1 L 1 0 . 1-— L<I>1/n2 Lnl/TLQ
C D - —(I)Q/nl ng/nl 0 1 —<I>1/n2 nl/nQ - L% - %(@1 + (I)Q) nl/ng
(1.15)

This is equivalent to two thin lenses separated by some distance, described by the ABCD matrix

A B\ _ 1 0\ (1 Lni/n 1 0
(0 D>_<—1/f2 1) (0 | 2) (—1/f1 1) (1.16)
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where
1 ng — Ny
_— = (bl = —
];1 & (1.17)
1 _p,-m-m
fo Ry

The curvature radii, R; and Ro, follow the usual sign convention: positive if the centre lies in the image
space, and negative if it lies in the object space.

1.6 POP description

Brief description of some concepts of physical optics wavefront propagation (POP) and how they are
implemented in PAOS.

In PAOS, this is handled by the class WFO.

1.6.1 General diffraction

Diffraction is the deviation of a wave from the propagation that would be followed by a straight ray, which
occurs when part of the wave is obstructed by the presence of a boundary. Light undergoes diffraction
because of its wave nature.

The Huygens-Fresnel principle is often used to explain diffraction intuitively. Each point on the wavefront
propagating from a single source can be though of as being the source of spherical secondary wavefronts
(wavelets). The combination of all wavelets cancels except at the boundary, which is locally parallel to
the initial wavefront.

However, if there is an object or aperture which obstructs some of the wavelets, changing their phase
or amplitude, these wavelets interfere with the unobstructed wavelets, resulting in the diffraction of the
wave.

1.6.2 Fresnel diffraction theory
Fresnel diffraction theory requires the following conditions to be met (see e.g. Lawrence et al., Applied
Optics and Optical Engineering, Volume XI (1992)):

1. aperture sized significantly larger than the wavelength
2. modest numerical apertures
3. thin optical elements

PAOS is implemented assuming that Fresnel diffraction theory holds.

1.6.3 Coordinate breaks

Coordinate breaks are implemented as follows:

1. Decenter by Zgec, Ydee
2. Rotation XYZ (first X, then Y, then Z)

The rotation is intrinsic (X, then around new Y, then around new Z).
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To transform the sagittal coordinates (z,u;) and the tangential coordinates (y,u,), define the position
vector

—

Ry = (:L’ — Tdecs Y — Ydec 0) (1'18)

and the unit vector of the light ray

—

no = (2ug, 2uy, 2) (1.19)

where z is an appropriate projection of the unit vector such that u, and u, are the tangent of the angles
(though we are in the paraxial approximation and this might not be necessary).

Note: =z does not need to be calculated because it gets normalised away.

The position on the rotated 2/, 3’ plane would be ﬁol = (2/,9,0) and the relation is
UTRy + pUTri = Ry (1.20)

that can be solved as

2 (1.21)

1.6.3.1 Example

Code example to use coordinate_break to simulate a coordinate break where the input field is centered
on the origin and has null angles us and u; and is subsequently decentered on the Y axis by yge. = 10.0 mm
and rotated around the X axis by x,o = 0.1°.

import numpy as np
from paos.core.coordinateBreak import coordinate_break

field = {'us': 0.0, 'ut': 0.0}
vt = np.array([0.0, field['ut']])
vs = np.array([0.0, field['us']])

xdec, ydec = 0.0, 10.0e-3 # m
xrot, yrot, zrot = 0.1, 0.0, 0.0 # deg

vt, vs = coordinate_break(vt, vs, xdec, ydec, xrot, yrot, zrot, order=0.0)

print(vs, vt)

[[0. 0.] [-0.01000002 0.00174533] ]
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1.6.4 Gaussian beams

For a Gaussian beam, i.e. a beam with an irradiance profile that follows an ideal Gaussian distribution
(see e.g. Smith, Modern Optical Engineering, Third Edition (2000))

_ 2'r22 2 _ 2'r22
I(r) = Ipe »&? = We w(z) (1.22)

where [ is the beam intensity on axis, r is the radial distance and w is the radial distance at which the
intensity falls to Iy/e?, i.e., to 13.5 percent of its value on axis.

Note: w(z) is the semi-diameter of the beam and it encompasses 86.5% of the beam power.

Due to diffraction, a Gaussian beam will converge and diverge from the beam waist wy, an area where
the beam diameter reaches a minimum size, hence the dependence of w(z) on z, the longitudinal distance
from the waist wg to the plane of w(z), henceforward “distance to focus”.

1+ (;)21 (1.23)

A Gaussian beam is defined by just three parameters: wg, zr and the divergence angle 6, as in Fig. 1.17
(from Edmund Optics, Gaussian beam propagation).

A Gaussian beam spreads out as

where zp is the Rayleigh distance.

Intensity Intensity Intensity

— - L
Radial Position Radial Position Radial Position

Fig. 1.17 — Gaussian beam diagram
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The complex amplitude of a Gaussian beam is of the form (see e.g. Lawrence et al., Applied Optics and
Optical Engineering, Volume XI (1992))

r2

_ro o2
a(n ()) —e w(% 6_% (124)

where k is the wavenumber and R is the radius of the quadratic phase factor, henceforward “phase radius”.
This reduces to

2

a(r,0) = e 3 (1.25)

at the waist, where the wavefront is planar (R — 00).

1.6.4.1 Rayleigh distance

The Rayleigh distance of a Gaussian beam is defined as the value of z where the cross-sectional area of
the beam is doubled. This occurs when w(z) has increased to v/2wp.

Explicitly:

Twd

= (1.26)

The physical significance of the Rayleigh distance is that it indicates the region where the curvature of
the wavefront reaches a minimum value. Since

R(z) =2+ %R (1.27)

in the Rayleigh range, the phase radius is R = 2zp.

From the point of view of the PAOS code implementation, the Rayleigh distance is used to develop a
concept of near- and far-field, to define specific propagators (see Wavefront propagation).

1.6.4.2 Gaussian beam propagation

To the accuracy of Fresnel diffraction, a Gaussian beam propagates as (see e.g. Lawrence et al., Applied
Optics and Optical Engineering, Volume XI (1992))

r? k2
a(r, z) = e Ik 0G) w2 ) (1.28)

where 6(z) is a piston term referred to as the phase factor, given by

0(z) = tan™* (Zf) (1.29)

0(z) varies from 7 to —m when propagating from z = —oo to z = occ.

The Gaussian beam propagation can also be described using ABCD matrix optics. A complex radius of
curvature ¢(z) is defined as:

_ _ . (1.30)
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Propagating a Gaussian beam from some initial position (1) through an optical system (ABCD) to a final
position (2) gives the following transformation:

1 C+D/ql
— =T/ 1.31
©» A+ B/q (1.31)

1.6.4.3 Example

Code example to use WFO to estimate Gaussian beam properties for a given beam with diameter d = 1.0
m, before and after inserting a Paraxial lens with focal length f = 1.0 m, and after propagating to the
lens focus. The zoom parameter is set to z = 4.

Important: The zoom parameter is the ratio between the grid’s linear dimension and the beam size.

from paos.classes.wfo import WFO

beam_diameter = 1.0 # m
wavelength = 3.0e-6
grid_size = 512

zoom = 4

wfo = WFO(beam_diameter, wavelength, grid_size, zoom)
print('Pilot Gaussian beam properties\n')

print ('Before lens\n')

print (f 'Beam waist: {wfo.w0:.le}')

print (f'Beam waist at current beam position: {wfo.wz: .1f}')
print (f'z-coordinate of the beam waist: {wfo.zwO: .1f}')
print (f'Rayleigh distance: {wfo.zr:.le}')

print (f'Focal ratio: {wfo.fratio/')

f1 =1.0 #m
wfo.lens(lens_f1=f1)

print ('\nAfter lens\n')

print (f'Beam waist: {wfo.wO:.le}')

print (f 'Beam waist at current beam position: {wfo.wz: .1f}')
print (f'z-coordinate of the beam waist: {wfo.zwO: .1f}')
print (f'Rayleigh distance: {wfo.zr: .le}')

print (f'Focal ratio: {wfo.fratio:.1f}')

wfo.propagate(dz=£f1)

print ('\nAfter propagation to lens focus\n')

print (f'Beam waist: {wfo.wO:.le}')

print (f 'Beam waist at current beam position: {wfo.wz: .le}t')
print (f'z-coordinate of the beam waist: {wfo.zwO:.1f}')
print (f'Rayleigh distance: {wfo.zr:.le}')

print (f'Focal ratio: {wfo.fratio:.1f}')
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Pilot Gaussian beam properties
Before lens

Beam waist: 5.0e-01

Beam waist at current beam position: 0.5
z-coordinate of the beam waist: 0.0
Rayleigh distance: 2.6e+05

Focal ratio: inf

After lens

Beam waist: 1.9e-06

Beam waist at current beam position: 0.5
z-coordinate of the beam waist: 1.0
Rayleigh distance: 3.8e-06

Focal ratio: 1.0

After propagation to lens focus

Beam waist: 1.9e-06

Beam waist at current beam position: 1.9e-06
z-coordinate of the beam waist: 1.0

Rayleigh distance: 3.8e-06

Focal ratio: 1.0

1.6.4.4 Gaussian beam magpnification

The Gaussian beam magnification can also be described using ABCD matrix optics. Using the definition
given in Magnification, in this case

A=M
D=1/M (1.32)
B=C=0

Therefore, for the complex radius of curvature we have that
@ =Mq (1.33)

Using the definition of ¢(z) it follows that

1. Ry = M*R,y

2. wyg = Mun
for the phase radius and the semi-diameter of the beam, while from the definition of Rayleigh distance it
follows that

1. zpro = MQZRJ
2. Wo,2 = M’LU()J
3. 29 =M%z

for the Rayleigh distance, the Gaussian beam waist and the distance to focus.
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Note: In the current version of PAOS, the Gaussian beam width is set along x. So, only the sagittal
magnification changes the Gaussian beam properties. A tangential magnification changes only the
curvature of the propagating wavefront.

1.6.4.5 Example

Code example to use WFO to simulate a magnification of the beam for the tangential direction M; = 3.0,
while keeping the sagittal direction unchanged (M, = 1.0).

from paos.classes.wfo import WFO

beam_diameter = 1.0 # m
wavelength = 3.0e-6
grid_size = 512

zoom = 4

wfo = WFO(beam_diameter, wavelength, grid_size, zoom)

print ('Before magnification\n')
print (f 'Beam waist: {wfo.w0}')

Ms, Mt = 1.0, 3.0
wfo.Magnification(Ms, Mt)

print ('\nAfter magnification\n')
print (f 'Beam waist: {wfo.w0}')

Before magnification
Beam waist: 0.5
After magnification

Beam waist: 1.5

As a result, the semi-diameter of the beam increases three-fold.

1.6.4.6 Gaussian beam change of medium

As seen in Medium change, a change of medium from n; to ny can be described using an ABCD matrix
with

A=1
Dznl/TLQ (1.34)
B=C=0

Therefore, for the complex radius of curvature we have that

g2 = qin2/m (1.35)
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Using the definition of ¢(z) it follows that

Ry = Ring/ny
wyo = W1

ZR2 = ZR,1M2/M1
Wo,2 = Wo,1

5. z9 = zlng/nl

o=

For the phase radius, the semi-diameter of the beam, the Rayleigh distance, the Gaussian beam waist
and the distance to focus, respectively.

Moreover, since Ay = A\na/ny, it follows that

fnum,Q = fnum,lnl/nZ (136)

1.6.4.7 Example

Code example to use WFO to simulate a change of medium from n; = 1.0 to no = 1.5, to point out the
change in distance to focus.

from paos.classes.wfo import WFO

beam_diameter = 1.0 # m
wavelength = 3.0e-6
grid_size = 512

zoom = 4

wfo = WFO(beam_diameter, wavelength, grid_size, zoom)
fl1 =1.0 #m
wfo.lens(lens fl=f1)

print ('Before medium change\n')
print (f'Distance to focus: {wfo.distancetofocus: .1f}')

nl, n2 =1.0, 1.5
wfo.ChangeMedium(nin2=n1/n2)

print ('\nAfter medium change\n')
print (f'Distance to focus: {wfo.distancetofocus: .1f}')

Before medium change
Distance to focus: 1.0
After medium change

Distance to focus: 1.5

1.6.5 Wavefront propagation

The methods for propagation are the hardest part of the problem of modelling the propagation through
a well-behaved optical system. A thorough discussion of this problem is presented in Lawrence et al.,
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Applied Optics and Optical Engineering, Volume XI (1992). Here we discuss the relevant aspects for the
PAQOS code implementation.

Once an acceptable initial sampling condition is established and the propagation is initiated, the beam
starts to spread due to diffraction. Therefore, to control the size of the array so that beam aliasing

does not change much from the initial state it is important to choose the right propagator (far-field or
near-field).

PAOS propagates the pilot Gaussian beam through all optical surfaces to calculate the beam width at
all points in space. The Gaussian beam acts as a surrogate of the actual beam and the Gaussian beam
parameters inform the POP simulation. In particular the Rayleigh distance zg is used to inform the
choice of specific propagators.

Aliasing occurs when the beam size becomes comparable to the array size. Instead of adjusting the
sampling period to track exactly, it is more effective to have a region of constant sampling period near
the beam waist (constant coordinates system of the form Axy = Az) and a linearly increasing sampling
period far from the waist (expanding coordinates system of the form Axy = A z|/MAzy).

For a given point, there are four possibilities in moving from inside or outside to inside or outside the
Rayleigh range (RR), defined as the region between —zp and zr from the beam waist:

inside <> |z — z(w)| < zg (1.37)
outside > |z — z(w)| > zr '

The situation is described in Fig. 1.18, taken from Lawrence et al., Applied Optics and Optical Engineering,
Volume XI (1992).

00 |
o1 ’I
S~ .—4
~ AR, -g‘.:r -~
~ 4‘4}, W
~ OV -
4'0& hng
-~

ARRAY BOUNDS BEAM RADIUS

— — — ————— — — —

ARRAY BOUNDS

~ R ZR RN
/// i'T‘J I0 I-E]_EI_I\\\\

Fig. 1.18 — Wavefront propagators

Explicitly, these possibilities are:

1. II(21, 22): inside RR to inside RR
2. 10(z1, #2): inside RR to outside RR
3. OI(z1, #2): outside RR to inside RR
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4. OO(z1, 22): outside RR to outside RR

To move from any point in space to any other, following Lawrence et al., Applied Optics and Optical
Engineering, Volume XTI (1992), PAOS implements three primitive operators:

1. plane-to-plane (PTP)
2. waist-to-spherical (WTS)
3. spherical-to-waist (STW)

Using these primitive operators, PAOS implements all possible propagations:

1. 1I(z1, z2) = PTP (22 — 21)

2. 10(z1, 22) = WTS(22 — z(w)) PTP(z2 — z(w))
3. OI(z1, 22) = PTP(22 — z(w)) STW(22 — z(w))
4. 00(z1, z2) = WTS(22 — z(w)) STW(z2 — z(w))

1.6.5.1 Example

Code example to use WFO to propagate the beam over a thickness of 10.0 mm.

from paos.classes.wfo import WFO

wfo = WFO(beam_diameter, wavelength, grid_size, zoom)
print (f'Initial beam position: {wfo.z}')

thickness = 10.0e-3 # m
wfo.propagate(dz = thickness)
print (f'Final beam position: {wfo.z}')

Initial beam position: 0.0
Final beam position: 0.01

The current beam position along the z-axis is now updated.

1.6.6 Wavefront phase

A lens modifies the phase of an incoming beam.

Consider a monochromatic collimated beam travelling with slope u = 0, incident on a paraxial lens,
orthogonal to the direction of propagation of the beam. The planar beam is transformed into a converging
or diverging beam. That means, a spherical wavefront with curvature > 0 for a converging beam, or a
< 0 for a diverging beam.

The convergent beam situation is described in Fig. 1.19.
where:

1. the paraxial lens is coloured in red
2. the converging beam cone is coloured in blue
3. the incoming beam intersects the lens at a coordinate y

and

z is the propagation axis (> 0 at the right of the lens)
f is the optical focal length
Az is the sag

@ o=
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YA

~Y

Fig. 1.19 — Diagram for convergent beam

4. 0 is the angle corresponding to the sag
Az depends from the x and y coordinates, and it introduces a delay in the complex wavefront a;(x,y, z) =
¢?7%/ incident on the lens (z = 0 can be assumed). That is:

a2($7y72) = a1($7yaz)e2ﬁjAZ/)\ (138)

The sag can be estimated using the Pythagoras theorem and evaluated in small angle approximation,
that is

Az=f— fQ—yzzg (1.39)

The phase delay over the whole lens aperture is then

x2+y2

Ad=—-Az/A=— 1.40
oy = =T (1.40
1.6.6.1 Sloped incoming beam
When the incoming collimated beam has a slope w1, its phase on the plane of the lens is given by e27/vu1/A
to which the lens adds a spherical sag.
This situation is described in Fig. 1.20.
The total phase delay is then
2 .2 2 _ 2 2 2 )2 2
A Y Ly 2ty fu)t yu 2T (g0 W (1.41)

2f\ ) 2f\ A 21\ 2f\

Apart from the constant phase term, that can be neglected, this is a spherical wavefront centred in
(Oa Yo, f)7 with Yo = ful-

Note: In this approximation, the focal plane is planar.

40 Chapter 1. User guide



PAOS Manual, 1.0.3.postl

YA

>
Z
Fig. 1.20 — Diagram for convergent sloped beam
1.6.6.2 Off-axis incoming beam
The case of off-axis optics is described in Fig. 1.21.
YA
o u >
2 z
Fig. 1.21 — Diagram for off-axis beam
In this case, the beam centre is at ye.
Let 0y be a displacement from y. along y. The lens induced phase change is then
2 .2 2 o502 2 2 2
2fA 2fA 2fA A 2fA
If the incoming beam has a slope u1, then
2 ) 2 ) 2
Ap— T ylmtu)  ve . (1.43)

2f\ A 21\
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Apart from constant phase terms, that can be neglected, this is equivalent to a beam that is incident
on-axis on the lens. The overall slope shifts the focal point in a planar focal plane. No aberrations are
introduced.

1.6.6.3 Paraxial phase correction

For an optical element that can be modeled using its focal length f (that is, mirrors, thin lenses and
refractive surfaces), the paraxial phase effect is

osy) = )RS
where t(x, y) is the complex transmission function. In other words, the element imposes a quadratic

phase shift. The phase shift depends on initial and final position with respect to the Rayleigh range (see
Wavefront propagation).

As usual, in PAOS this is informed by the Gaussian beam parameters. The code implementation consists
of four steps:

1. estimate the Gaussian beam curvature after the element (object space) using Eq. (1.27)
2. check the initial position using Eq. (1.37)

3. estimate the Gaussian beam curvature after the element (image space)

4. check the final position

By combining the result of the second and the fourth step, PAOS selects the propagator (see Wavefront
propagation). and the phase shift is imposed accordingly by defining a phase bias (see Lawrence et al.,
Applied Optics and Optical Engineering, Volume XI (1992)):

Propagator Phase bias Description

II 1/f—=1/f No phase bias

(0] 1/f—=1/f+1/R Phase bias after lens

01 1/f—-1/f-1/R Phase bias before lens

010) 1/f = 1/f —1/R+1/R’ Phase bias before and after lens

where R is the radius of curvature in object space and R’ in image space.

1.6.7 Apertures

The actual wavefront propagated through an optical system intersects real optical elements (e.g. mirrors,
lenses, slits) and can be obstructed by an object causing an obscuration.

For each one of these cases, PAOS implements an appropriate aperture mask. The aperture must be
projected on the plane orthogonal to the beam. If the aperture is (yc, ¢z, ¢y), the aperture should be set
as

1

(ya — Yer P m‘%)

Supported aperture shapes are elliptical, circular or rectangular.
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1.6.7.1 Example

Code example to use WFO to simulate the beam propagation through an elliptical aperture with semi-major
axes Trqq = 0.55 and y,q.q = 0.365, positioned at xge. = 0.0, ygee = 0.0.

from paos.classes.wfo import WFO

xrad = 0.55 # m
yrad = 0.365
xdec = ydec = 0.0

field = {'us': 0.0, 'ut': 0.1}
vt = np.array([0.0, field['ut']])
vs = np.array([0.0, field['us']])

xrad *= np.sqrt(l / (vs[1] *x 2 + 1))
yrad *= np.sqrt(l / (vt[1] **x 2 + 1))
xaper = xdec - vs[0]
yaper = ydec - vt[0]

wfo = WFO(beam_diameter, wavelength, grid_size, zoom)

aperture_shape = 'elliptical' # or 'rectangular'’
obscuration = False # <f True, applies obscuration

aperture = wfo.aperture(xaper, yaper, hx=xrad, hy=yrad,
shape=aperture_shape, obscuration=obscuration)

print (aperture)

Aperture: EllipticalAperture
positions: [256., 256.]

a: 70.4

b: 46.48813752661069

theta: 0.0

1.6.8 Stops

An aperture stop is an element of an optical system that determines how much light reaches the image
plane. It is often the boundary of the primary mirror. An aperture stop has an important effect on the
sizes of system aberrations.

The field stop limits the field of view of an optical instrument.

PAOS implements a generic stop normalizing the wavefront at the current position to unit energy.

1.6.8.1 Example

Code example to use WFO to simulate an aperture stop.
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import numpy as np
from paos.classes.wfo import WFO

wfo = WFO(beam_diameter, wavelength, grid_size, zoom)

print ('Before stop\n')
print(f'Total throughput: {np.sum(wfo.amplitudex**2)/}"')

wfo.make_stop()

print ('\nAfter stop\n')
print(f'Total throughput: {np.sum(wfo.amplitudex**2) /')

Before stop
Total throughput: 262144.0
After stop

Total throughput: 1.0

1.6.9 POP propagation loop

PAOS implements the POP simulation through all elements of an optical system. The simulation run is
implemented in a single loop.

At first, PAOS initializes the beam at the centre of the aperture. Then, it initializes the ABCD matrix.

Once the initialization is completed, PAOS repeats these actions in a loop:

[u—y

Apply coordinate break

2. Apply aperture

3. Apply stop

4. Apply aberration (see Aberration description)
5. Save wavefront properties

6. Apply magnification

7. Apply medium change

8. Apply lens

9. Apply propagation by thickness

10. Update ray vectors and ABCD matrices (and save them)
11. Repeat over all optical elements

Note: Each action is performed according to the configuration file, see Input system.

1.6.9.1 Example

Code example to use WFO to simulate a simple propagation loop that involves key actions such as applying
a circular aperture, the throughput normalization, applying a Paraxial lens with focal length f = 1.0 m,
and propagating to the lens focus.
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import matplotlib.pyplot as plt
from paos.classes.wfo import WFO

fig, (ax0, axl) = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
wfo = WFO(beam_diameter, wavelength, grid_size, zoom)

wfo.aperture(xc=xdec, yc=ydec, r=beam_diameter/2, shape='circular')
wfo.make_stop()

ax0.imshow(wfo.amplitude**2)

ax0.set_title('Aperture')

fl1 =1.0 #m
thickness = 1.0

wfo.lens(lens fl=f1)
wfo.propagate(dz=thickness)
axl.imshow(wfo.amplitude**2)
axl.set_title('Focus')

zoomin = 16

shapex, shapey = wfo.amplitude.shape

axl.set_xlim(shapex // 2 - shapex // 2 // zoomin, shapex // 2 + shapex // 2 // zoomin)
axl.set_ylim(shapey // 2 - shapey // 2 // zoomin, shapey // 2 + shapey // 2 // zoomin)

plt.show()
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1.7 Aberration description

Brief description of wavefront error (WFE) modelling and how it is implemented in PAOS.

In PAOS, this is handled by the class Zernike.
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1.7.1 Introduction

In optics, aberration is a property of optical systems, that causes light to be spread out over some region
of space rather than focused to a point. An aberration causes an image-forming optical system to depart
from the prediction of paraxial optics (see Parazial region), producing an image which is not sharp. The
WFE and the resulting image distortion depend on the type of aberration.

The WFE can be modelled as a superposition of Zernike polynomials that describe Optical aberrations
and a random Gaussian field that describes Surface roughness. That is, the WFE can be decomposed
into low frequency and medium-to-high frequency contributors.

Useful concepts to estimate image quality such as

1. Strehl ratio
2. Encircled energy

are discussed in the following sections for self-consistency.

1.7.1.1 Strehl ratio

For large aberrations, the image size is larger than the Airy disk. From the conservation of energy, the
irradiance at the center of the image has to decrease when the image size increases.

Image quality can be assessed using the Strehl ratio (see e.g. Malacara-Herndndez, Daniel & Malacaea-
Hernandez, Zacarias & Malacara, Zacarias. (2005). Handbook of Optical Design Second Edition.), i.e.
the ratio of the irradiance at the center of the aberrated PSF to that of an ideal Airy function, which is
approximated as

Strehl ratio ~ 1 — k%03, (1.44)

where k is the wavenumber and oy is the wavefront variance, i.e. the square of the rms wavefront
deviation. This expression is adequate to estimate the image quality for Strehl ratios as low as 0.5.

1.7.1.2 Encircled energy

Another way to assess image quality is by estimating the radial (or encircled) energy distribution of the
PSF.

The encircled energy can be obtained from the spot diagram by counting the number of points in the
diagram, inside of circles with different diameters. Alternatively, the fraction of the encircled energy f in
function of the encircled energy aperture radius R, in image-space-normalized units can be computed as

2m Ry
f= /0 /0 PSFE(r,¢) r dr do (1.45)

For an ideal diffraction limited system Rgg3s = 1.22, and Rgg19 = 2.26 are the energy encircled in the
first and second Airy null, respectively. For an optical system that can be described using a single Fly the
normalised radii can be expressed in units of wavelengths using

r= RfF#)\ (1.46)

Fig. 1.22 reports the encircled energy in function of R; for an aberrated PSF and a diffraction limited
PSF. The 83.8% and 91.0% levels are marked in red for the aberrated PSF, and in black for the diffraction
limited PSF.
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Fig. 1.22 — Encircled energy

1.7.2 Optical aberrations

PAOS models an optical aberration using a series of Zernike polynomials, up to a specified radial order.

Following Laksminarayan & Fleck, Journal of Modern Optics (2011), the function describing an arbitrary
wavefront wavefront in polar coordinates W(r,#) can be expanded in terms of a sequence of Zernike
polynomials as

W(p,0) = C'Z;(p.9) (1.47)

n,m

where C]" are the coefficient of the Zernike polynomial Z*(p, 0).

The first three terms in (1.47) describe Piston and Tilt aberrations and can be neglected. Non-normalised
Zernike polynomials are defined in PAQS as:

Zm = {an(,o) cos(ma) m >0 (1.48)
R.™(p) cos(me) m <0

where the radial polynomial is normalized such that R'(p = 1) =1, or

n+1

{1z (0. 0))") =2

with d,,, the Kroneker delta function, and the average operator () is intended over the pupil.

Using polar elliptical coordinates allows PAOS to describe pupils that are elliptical in shape as well as
circular:

2 2
P = Lpup | Ypup (1.50)
a? b2
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where xp,,;, and Y, are the pupil physical coordinates and a and b are the pupil semi-major and semi-minor
axes, respectively.

Fig. 1.23 reports surface plots of the Zernike polynomial sequence up to radial order n = 10. The name of
the classical aberration associated with some of them is also provided (figure taken from Laksminarayan
& Fleck, Journal of Modern Optics (2011)).

PAOS can generate both ortho-normal polynomials and orthogonal polynomials and the ordering can be
either ANSI (default), or Noll, or Fringe, or Standard (see e.g. Born and Wolf, Principles of Optics,
(1999)).

1.7.2.1 Example of an aberrated pupil

An example of aberrated PSFs at the Ariel Telescope exit pupil is shown in Fig. 1.24.

In this figure, the same Surface Form Error (SFE) of 50 nm is allocated to different optical aberrations.
Starting from the top left panel (oblique Astigmatism), seven such simulations are shown, in ascending
Ansi order.

Each aberration has a different impact on optical quality, requiring a detailed analysis to translate e.g. a
scientific requirement on optical quality into a WFE allocation.

1.7.3 Surface roughness

Optical elements exhibit surface roughness, i.e. medium to high frequency defects produced during
manufacturing (e.g. using diamond turning machines). These types of defects reduce the Strehl ratio
without significantly altering the PSF’s fundamental shape.

The resulting aberrations can be statistically described using a zero-mean random Gaussian field with
variance og or relative to the spatial scales of interest using e.g. a parameterized Power Spectral Density
(PSD) specification (Church1991).

Users can easily implement this using the PAOS APT if necessary, and there are potential plans for inclusion
in future PAOS releases.

1.8 Materials description

Brief description of dispersion of light by optical materials and how it is implemented in PAOS.

In PAOS, this is handled by the class Material.

1.8.1 Light dispersion

In optics, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency:

c
v=—
n
where c¢ is the speed of light in a vacuum and n is the refractive index of the dispersive medium. Physically,
dispersion translates in a loss of kinetic energy through absorption. The absorption by the dispersive
medium is different at different wavelengths, changing the angle of refraction of different colors of light as
seen in the spectrum produced by a dispersive Prism and in chromatic aberration of Thick lens.
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Fig. 1.24 — Ariel Telescope exit pupil PSFs for different aberrations and same SFE

This can be seen in geometric optics from Snell’s law:

sin(f2) g

sin(6h)  no
that describes the relationship between the angle of incidence 61 and refraction 65 of light passing through

a boundary between an isotropic medium with refractive index nq, and another with no.

For air and optical glasses, for visible and infra-red light refraction indices n decrease with increasing A
(normal dispersion), i.e.

dn
a<0

while for ultraviolet the opposite behaviour is typically the case (anomalous dispersion).

See later in Supported materials for the dispersion behaviour of supported optical materials in PAOS.

1.8.2 Sellmeier equation

The Sellmeier equation is an empirical relationship for the dispersion of light in a particular transparent
medium such as an optical glass in function of wavelength. In its original form (Sellmeier, 1872) it is
given as

Ki\?

i
where n is the refractive index, A is the wavelength and K; and +/L; are the Sellmeier coefficients,

determined from experiments.

Physically, each term of the sum represents an absorption resonance of strength K; at wavelength /L;.
Close to each absorption peak, a more precise model of dispersion is required to avoid non-physical values.

PAOS implements the Sellmeier 1 equation (Zemax OpticStudio © notation) to estimate the index of
refraction relative to air for a particular optical glass at the glass reference temperature and pressure

Tyes = 20°C

(1.52)
Pref =1 atm
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This form of the original equation consists of only three terms and is given as

K \2 Ko\ K3\

2 1 2 3

=1 1.53
n2(\) +A2_L1+A2_L2+A2_L3 (1.53)

The resulting refracting index should deviate by less than 1076 from the actual refractive index which is
order of the homogeneity of a glass sample (see e.g. Optical properties).

1.8.2.1 Example

Code example to use Material to estimate and plot the index of refraction of borosilicate crown glass
(known as BK7) for a range of wavelengths from the visible to the infra-red.

import numpy as np
import matplotlib.pyplot as plt

from paos.util.material import Material

wl = np.linspace(0.5, 8.0, 100)
mat = Material (wl=wl)

glass = 'BK7'
material = mat.materials[glass]
sellmeier = mat.sellmeier(material['sellmeier'])

fig = plt.figure(figsize=(8, 6))

ax = fig.add_subplot(i,1,1)

ax.plot(wl, sellmeier)
ax.set_title(f'{glass} refractive index')
ax.set_ylabel('Sellmeier')

ax.set_xlabel (r'Wavelength [$\mu$m]')
plt.grid()

plt.show()
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1.8.3 Temperature and refractive index

Changes in the temperature of the dispersive medium affect the refractive index. The temperature
coefficient of refractive index is defined as the deviation dn/dT from the curve and depends from both
wavelength and temperature.

The temperature coefficient values can be given as absolute (as measured under vacuum) and relative (as
measured at ambient air (dry air at standard pressure).

PAOS estimates the air reference index of refraction as

294981012 A2
949810 ) (1.54)

=1.0+1.0-108(6432.8 + " 4 25540————
Thref + < T o1 AN —1

where A is in units of micron, at the reference temperature T' = 15°C and standard pressure. Under

different temperatures and pressures, PAOS rescales this reference index using this formula
P (npep — 1)

1.0 +3.4785 - 10—3(T — 15)

Ngir = 1+ (155)
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The absolute temperature coefficient for a different medium can be calculated from the relative index as
(see e.g. Optical properties).

dn dn dn
; __ai 1.
,absolute = ,relative + n ( ,a1r> (1.56)

PAOS calculates the refractive index of an optical material at a given pressure and temperature as

n%—1

n(AT) = DoAT +n (1.57)

where AT is given by the difference between the material operative temperature Ty, and the reference

temperature Ty, n is the refractive index as estimated using (1.53) and Dy is a temperature constant of
the material.

1.8.3.1 Example

Code example to use Material to estimate the index of refraction of borosilicate crown glass (known as
BKT7) for a given wavelength at reference and operating temperature.

from paos.util.material import Material

wl = 1.95 # micron

Tref, Tambient = 20.0, -223.0

mat = Material(wl, Tambient=Tambient)
glass = 'BK7'

nmatO, nmat = mat.nmat(glass)

from IPython.display import display, Latex
display(Latex("\\textrm{Index of refraction at } T_

:\\newline n_{/s, 0},

o " % (Tref, glass, nmat0)))
display(Latex("\\textrm{Index of refraction at } T_ = :\\newline n_{/s, O},
o= " % (Tambient, glass, nmat)))

Index of refraction at T,y = 20.0 : npg7,0 = 1.4956

Index of refraction at Ty, = —223.0 : npk7,0 = 1.4955

1.8.4 Pressure and refractive index

Note also that PAOS can easily model systems used in a vacuum by changing the air pressure to zero.

1.8.4.1 Example

Same code example as before, but ambient pressure is set to zero.

mat = Material(wl, Tambient=Tambient, Pambient=0.0)

nmatO, nmat = mat.nmat(glass)
(continues on next page)
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(continued from previous page)

from IPython.display import display, Latex

display(Latex("\\textrm{Index of refraction at } T_ = :\\newline n_{/s, 0},
o= " % (Tref, glass, nmat0)))

display(Latex("\\textrm{Index of refraction at } T_ = :\\newline n_{/s, 0},
o= " % (Tambient, glass, nmat)))

Index of refraction at T,y = 20.0 : npg7,0 = 1.4952

Index of refraction at Ty, = —223.0 : npg7,o = 1.4951

Note the non-negligible difference in the resulting refractive indexes.

1.8.5 Supported materials

PAQS supports a variety of optical materials (list is still updating), among which:

1. CAF2 (calcium fluoride)

SAPPHIRE (mainly aluminium oxide (o — Al203) )
ZNSE (zinc selenide)

BKT7 (borosilicate crown glass)

SF11 (a dense-flint glass)

6. BAF2 (barium flouride)

AN

The relevant ones for the Ariel space mission are all of them except BAF2. A detailed description of the
optical properties of these materials is beyond the scope of this documentation. However, for reference,
Fig. 1.25 reports their transmission range (from Thorlabs, Optical Substrates).

1.8.5.1 Example

Code example to use Material to print all available optical materials.

from paos.util.material import Material

mat = Material(wl=1.95)
print ('Supported materials: ')
print (*mat.materials.keys(), sep = "\n")

Supported materials:
CAF2

SAPPHIRE

ZNSE

BK7

SF6

SF11

BAF2
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1.8.5.2 Example

Code example to use Material to plot the refractive index for all available optical materials, at their
operating and reference temperature.

from paos.util.material import Material

mat = Material (wl=np.linspace(0.5, 8.0, 100))
mat.plot_relative_index(material_list=mat.materials.keys())
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1.9 Monte Carlo simulations

PAOS is designed to easily accommodate customized simulations such as Monte Carlo runs to test the
performance of an optical system with varying parameters. This is particularly useful as it overcomes one
major drawback from using commercial propagation software such as Zemax OpticStudio, which requires
preliminary knowledge of Zemax Programming Language (ZPL). Instead, PAOS can be used out of the box
as a standard Python library, interleaved with user-written code to suit a specific simulation. Moreover,
PAOS’s routines can be easily run in parallel by leveraging standard Python libraries such as joblib and
tqdm, for computational efficiency.

1.9.1 Multi-wavelength simulations

PAOS uses the method parse_config to parse the .ini configuration file and return a list of optical chains,
where each list entry is a dictionary of the optical surfaces in the file, estimated at the given wavelength.

This output can be readily used to run POP simulations at each different wavelength, to test that
the system properties and optical performance are always compliant to specification. For instance,
wavelength-dependent total throughput for systems with optical diaphragms and variations in effective
focal ratio for systems with diffractive elements.

1.9.2 Wavefront error simulations

PAOS can be used to evaluate the performance of an optical system for a given number of wavefront error
realizations, to test the compatibility of the aberrated PSFs with some performance requirement. For
instance, PAOS provides an ensemble of wavefront error realizations (see Fig. 1.26) that are compatible or
nearly compatible with the encircled energy (EE) requirement at the Ariel telescope exit pupil.

The recommended way to access this dataset is using the astropy method ascii as in the following code
example.

import os
from astropy.io import ascii

wfe_file = os.path.join('path/to/wfe_file.csv')
wfe = ascii.read(wfe_file)

The whole set provides an effective way to test subsystems optical performances ahead of a measurement
of the surface deviation of the Ariel telescope assembly (TA).

For example, it has been used to derive the rEE (radius of encircled energy) requirement for the Ariel
Optical Ground Support Equipment (OGSE), whose primary goal is to provide end-to-end testing of
the integrated Ariel telescope, optical bench and spectrometers. To account for gravity effect (potato
chip), vertical astigmatism was fixed to 3 pm root mean square (r.m.s.) as a rough estimate that will be
replaced in the future with an input from Structural, Thermal and Optical Performance (STOP) analysis.

PAOS was used to simulate the wavefront propagation through the OGSE module at 500nm, where
diffraction effects are smallest. To simulate the OGSE beam, the Ariel primary mirror M1 was illuminated
with a perfect beam with footprint 1/4 the M1 diameter and the OGSE beam expander was modeled as
a lens doublet giving an expansion of 4.

Below, we report the histogram of aperture sizes that give an EE ~ 90% at the OGSE exit pupil. The
difference between these aperture sizes and the TA rEE requirement informs on how aberrated the OGSE
beam can be.
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EEOO0 EEO01 EEO002 EE998 | EE999

86.7 87.5 87.6 94.5 94.6
#J N M WFEO00 WFEOO1 WFEOQ02 WFE998 WFE999
4 2 2 77.2 -25.6 -16.2 29.2 148
5 2 0 70 -294 -154 36.6 15
6 2 -2 -3.6 6.4 33 -49.8 25.4
73 3 -1.6 14 -2.8 44 -54.2
8 3 1 6.2 28.8 13.6 -29.4 -11.6
9 3 -1 13.6 -1.2 -53.6 -13.2 -10.2
10 3 -3 43 66 -20 17 10.8
11 4 4 134 -5.8 -14.2 -154 -17
12 4 2 2.2 4.4 -29.2 0.6 24
13 4 0 7.8 -2 -37.4 -1.6 0.8
14 4 -2 7 -11.2 -7.8 -1.4 5.6
15 4 4 36.6 17.6 4 2.6 -54.6
16 5 5 -46.4 33.2 31.6 4 16.4
17 5 3 2.6 23.8 1.2 -13.8 -9.6
18 5 1 4 10.2 -8.2 354 13.2
19 5 -1 -15.2 242 184 176 0.6
205 -3 -14.6 7.8 -16.4 -8.4 -43.6
21 5 -5 134 47.6 -22.8 36 146
22 6 6 15 8 -29.8 25.2 27.6
23 6 4 19 10 -24.2 -12.4 -3.6
24 6 2 148 16.4 -6.6 11.8 3.8
25 6 0 -11 17.2 13.4 -6.6 -13.2
26 6 -2 17 5.2 -0.2 -10.8 -11.6
27 6 4 -11.2 3.4 28.2 12 34
28 6 -6 0.8 2.6 13.6 -13.2 6.2
29 7 7 -14 5.2 3.2 98 0.6
30 7 5 5.8 13.8 -6 0.6 19.2
31 7 3 7.6 3 24 -1.2 48
32 7 1 24 2.8 5.6 2.2 -12.8
33 7 -1 -12.2 -114 -15.6 3 3.4
34 7 -3 0.8 -9.4 9 74 -204
35 7 5 -15.4 14 0.2 7.6 16.6
36 7 -7 14 0.6 4.6 -18.2 -9.8

1.9. Monte Carlo simulations
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Fig. 1.27 — Histogram of aperture sizes for OGSE
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1.10 Plotting results

PAOS implements different plotting routines, summarized here, that can be used to give a complementary
idea of the main POP simulation results.

1.10.1 Base plot

The base plot method, simple_plot, receives as input the POP output dictionary and the dictionary
key of one optical surface and plots the squared amplitude of the wavefront at the given optical surface.

1.10.1.1 Example

Code example to use simple_plot to plot the expected PSF at the image plane of the EXCITE optical
chain.

import matplotlib.pyplot as plt
from paos.core.plot import simple_plot

fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(1l,1,1)

key = list(ret_val.keys())[-1] # plot at last optical surface
simple_plot(fig, ax, key=key, item=ret_vallkey], ima_scale='log')

plt.show()
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The cross-sections for this PSF can be plotted using the method plot_psf_zsec, as shown below.

from paos.core.plot import plot_psf_xsec

fig = plt.figure(figsize=(9, 8))
ax = fig.add_subplot(1,1,1)

key = list(ret_val.keys())[-1] # plot at last optical surface
plot_psf_xsec(fig, ax, key=key, item=ret_val[key], ima_scale='log')

plt.show()
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1.10.2 POP plot

The POP plot method, plot_pop, receives as input the POP output dictionary plots the squared
amplitude of the wavefront at all available optical surfaces.

1.10.2.1 Example

Code example to use plot_pop to plot the squared amplitude of the wavefront at all surfaces of the
EXCITE optical chain.

from paos.core.plot import plot_pop
plot_pop(ret_val, ima_scale='log', ncols=2)

1.10. Plotting results 63



PAOS Manual, 1.0.3.postl

S03 | F#inf | w250.00mm | A2.50um | P100% S04 | F#2.50 | w62.45mm | A2.50um | P100%
60
2001 -25 -25
40
-5.0 -5.0
100 4
- 20 —_
dah o o
x x
E 01 1002 E 0 ~10.0 &
r r
125 H 125 H
—e2 g -20 e
—~100
-15.0 -15.0
-40
~2004 -17.5 -175
—60
| | - ! ‘ —-20.0 -20.0
-200 —100 0 100 200 -60 -40 -20 0 20 40 60
mm mm
S06 | F#12.00 | wl9.11micron | A2.50um | PB%"/@ S07 | F#12.00 | wl9.11micron | A2.50um | P890°/6:
150 { : 150 | :
-2.5 -25
100 1 100
-5.0 -5.0
= 50 =
-75 3 -75 3
c S
£ -10.0 5 g -10.0 5
g e E ——
E [} o
-12.5 H -12.5 H
-50 e -50 Ta
-15.0 -15.0
-100 -100
-17.5 -17.5
—150 ¢ ] ! . ! ‘ 500 1504 ] ! . ! ! A 500
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150
micron micron

1.11 Saving results

PAOS implements different saving routines, summarized here, that can be used to save the main POP
simulation results.

1.11.1 Save output

The base saving method, save_output, receives as input the POP simulation output dictionary, a hdf5
file name and the keys to store at each surface and saves the dictionary along with the PAOS package
information to the hdf5 output file. If indicated, this function overwrites a previously saved file.

The hdf5 file is structured in two sub-folders, as shown in Fig. 1.28. The first one is labelled with the
wavelength used in the simulation, while the other is labelled ‘info’.

The first folder contains a list of sub-folders, in which is stored the data relative to the individual optical
surfaces. Each surface is labelled as ‘S#’ where # is the surface index, as shown in Fig. 1.29.

The ‘info’ folder contains the data that are needed for traceability and versioning of the results, as shown
in Fig. 1.30.

This includes:

1. The HDF5 package version
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2. The PAOS creator names
3. The saving path
4. The saving time in human readable format
5. The hbpy version
6. This package’s name
7. This package’s version
PAOS_Excite_TEL_v01 finfo - 0O X
File Go View Window Help
(']
¢ @ ¢ b
back up top lisk icon
Name Kind
info {4 HDF5_Version HDF5 Dataset
kg creator HDF5S Dataset
E— tu File_name HDF5 Dataset
- tui File_time HDF5 Dataset
k.4 hSpy_version HDF5 Dataset
fi program_name HDF5 Datasekt
HDF5 Group .
ki program_version HDF5 Datasekt
7 items

Fig. 1.30 — Output file info interface

1.11.1.1 Example

Code example to use save_output to save the POP simulation output dictionary.

The user can select to save only the relevant dictionary keys, here ‘wfo’ (the complex wavefront array),
‘dx’ (the sampling along the horizontal axis), ‘dy’ (the sampling along the vertical axis).

from paos.core.saveOutput import save_output

save_output (ret_val,
file_name='path/to/hdf5',
keys_to_keep=['wfo', 'dx', 'dy'l],
overwrite=True)

1.11.2 Save datacube

The save_datacube method receives as input a list of output dictionaries for each POP simulation, a
hdf5 file name, a list of identifiers to tag each simulation and the relevant keys to store at each surface,
and saves all the outputs to a data cube stored in the hdf5 output file. If indicated, this method overwrites
a previously saved file.

Fig. 1.31
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Fig. 1.31 — Output file cube general interface

1.11.2.1 Example

list icon

Code example to use save_datacube to save the output dictionary for multiple POP simulations done

at different wavelengths.

The user can select to save only the relevant dictionary keys, here ‘amplitude’ (the wavefront amplitude),
‘dx’ (the sampling along the horizontal axis), ‘dy’ (the sampling along the vertical axis).

from paos.core.saveOutput import save_datacube

save_datacube(retval_list=ret_val_list,
file_name='path/to/hdf5',
group_names=['2.5', '3.0'],
keys_to_keep=['amplitude', 'dx', 'dy'l],
overwrite=True)

1.12 Automatic pipeline

Pipeline to run a POP simulation and save the results, given an input dictionary with selected options.

1.12.1 Base pipeline

This pipeline

1. Sets up the logger;
Parses the lens file;
Performs a diagnostic ray tracing (optional);

Runs the POP in parallel or using a single thread;

o Otk

If indicated, the output includes plots.

Produces an output where all (or a subset) of the products are stored;

Sets up the optical chain for the POP run automatizing the input of an aberration (optional);

1.12. Automatic pipeline

67




PAOS Manual, 1.0.3.postl

1.12.1.1 Example

Code example to the method pipeline to run a simulation using the configuration file for AIRS-CHI.

from paos.core.pipeline import pipeline

pipeline(passvalue={'conf': 'path/to/ini/file",
'output': 'path/to/hdf5',
'plot': True,
'loglevel': 'info',
'n_jobs': 2,
'store_keys': 'amplitude,dx,dy,wl',
'return': Falsel})
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Chapter 2

Developer guide

In this section we report some general guidelines for contributing to PAOS development.

The section is inspired by the package ExoSim2.0.

2.1 Coding conventions

The PAOS code has been developed following the PeP8 standard and the python Zen.

import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than demnse.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
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2.2 Documentation

Every PAOS function or class should be documented using docstrings which follow numpydoc structure.
This web page is written using the reStructuredText format, which is parsed by sphinx. If you want to
contribute to this documentation, please refer to sphinx documentation first. You can improve this pages
by digging into the docs directory in the source.

2.3 Testing

Unit-testing is very important to make sure that each code addition is tested and validated and the code
never breaks. This shall be provided after PAOS v1.0.0.

2.4 Logging

To keep a logger is very important when coding, hence we include a paos. log.logger.Logger class to
inherit.

import paos.log as log

class MyClass(log.Logger):

This newly created class has the logging methods from the main Logger class. Here are some examples
of how to use them:

self.info("info message")
self.debug("debug message")

self .warning("warning message")
self.error("error message")
self.critical("critical message")

The logger output will be printed on the run or stored in the log file, if the log file option is enabled. To
enable the log file, the user can refer to paos.log.addLogFile.

Note: The logger implemented in PAOS is inspired by the logging classes in ExoSim2.0, which is originally
inspired by the ones in TauREx3 (developed by Ahmed Al-Refaie).

The user can also set the level of the printed messaged using paos.log.setLoglLevel, or enable or disable
the messaged with paos.log.enableLogging or paos.log.disableLogging

2.5 Versioning conventions

The versioning convention used (after PAOS v1.0.0) shall be the one described in Semantic Versioning
(semver) and shall be compliant to PEP440 standard. In the X.Y.Z scheme, for each modification to the
previous release we increase one of the numbers.

e X
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increased only if the code in not compatible anymore with the previous version. This is considered
a Major change.

e Y
increased for minor changes. These are for the addition of new features that may change the results
from previous versions. This are still hard edits, but not enough to justify the increase of an X.

« 7
the patches. This number should increase for any big fixed, or minor addition or change to the code.
It won’t affect the user experience in any way.

2.6 Source Control

The code is hosted on GitHub (https://github.com/arielmission-space/PAOS) and structured as following.
The source has two main branches:

e main
branch for stable and releases. It is the public branch and should be handled carefully.
e develop
working branch where the new features are tested before they are moved to the master branch

2.6.1 Adding new features

New features can be added to the code following the schemes designed above.

If the contributor has writing rights to the repository, should create a new branch starting from the
develop one. In the new feature branch the user should produce the new functionalities, according to the
above guidelines. When the feature is ready, the branch can be merged into the official develop one.

To create the new feature starting from the current develop version, the contributor should run

$ git checkout develop
$ git checkout -b feature/<branchname>

The completed feature shall then be merged to the develop:

$ git checkout develop
$ git merge feature/<branchname>
$ git push

Once a feature is completed and merged, the contributor should archive the branch and remove it, to
keep the repository clean. The usual procedure is:

$ git tag archive/<branchname> feature/<branchname>
$ git push --tags
$ git branch -d feature/<branchname>

Remember to delete the branch also from the remote repository. If needed, the feature branch can be
restored as

[$ git checkout -b <branchname> archive/<branchname> }

If the contributor does not have writing rights to the repository, should use the Fork-and-Pull model.
The contributor should fork the main repository and clone it. Then the new features can be implemented.
When the code is ready, a pull request can be raised.

2.6. Source Control 71


https://github.com/arielmission-space/PAOS
https://en.wikipedia.org/wiki/Fork_and_pull_model
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request

PAOS Manual, 1.0.3.postl

fork and pull ‘Lﬁ:ﬁ':ﬁ EE?E:
l
ver x.y.(z-1)
Fork
B Verx.y.z —» VET X.Y.Z
Ver .y (z+1)
Pull ¥

new release
with 2 patches

» ver wy.(z+2) ——> Ver .y (2+2)
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Chapter 3

API guide

3.1 ABCD (paos.classes.abcd)

class ABCD(thickness=0.0, curvature=0.0, n1=1.0, n2=1.0, M=1.0)

Bases: object
ABCD matrix class for paraxial ray tracing.

Variables
o thickness (scalar) — optical thickness
o power (scalar) — optical power
e M (scalar) — optical magnification

e nin2 (scalar) — ratio of refractive indices nl/n2 for light propagating from a

medium with refractive index nl, into a medium with refractive index n2

(+Z), and -1 for light travelling right-to-left (-Z)

c (scalar) — speed of light. Can take values 41 for light travelling left-to-right

Note: The class properties can differ from the value of the parameters used at class instantiation.
This because the ABCD matrix is decomposed into four primitives, multiplied together as discussed

in Optical system equivalent.

Examples

>>> from paos.classes.abcd import ABCD

>>> thickness = 2.695 # mm

>>> radius = 31.850 # mm

>>> nl, n2 = 1.0, 1.5

>>> abcd = ABCD(thickness=thickness, curvature=1.0/radius, nl=nl, n2=n2)
>>> (A, B), (C, D) = abcd.ABCD

Initialize the ABCD matrix.

Parameters

o thickness (scalar) — optical thickness. It is positive from left to right. Default

is 0.0
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o curvature (scalar) — inverse of the radius of curvature: it is positive if the center
of curvature lies on the right. If n1=n2, the parameter is assumed describing a
thin lens of focal ratio l=1/curvature. Default is 0.0

o nl (scalar) — refractive index of the first medium. Default is 1.0

e n2 (scalar) — refractive index of the second medium. Default is 1.0

M (scalar) — optical magnification. Default is 1.0

Note: Light is assumed to be propagating from a medium with refractive index nl into a medium
with refractive index n2.

Note: The refractive indices are assumed to be positive when light propagates from left to right
(+Z), and negative when light propagates from right to left (-Z)

property thickness
property M
property nin2
property power
property cin
property cout
property f_eff

property ABCD

3.2 WFO (paos.classes.wfo)

class WFO(beam__diameter, wl, grid_ size, zoom)

Bases: object

Physical optics wavefront propagation. Implements the paraxial theory described in Lawrence et
al., Applied Optics and Optical Engineering, Volume XI (1992)

All units are meters.

Parameters
o beam_diameter (scalar) — the input beam diameter. Note that the input beam
is always circular, regardless of whatever non-circular apodization the input pupil
might apply.
o wl (scalar) — the wavelength
o grid_size (scalar) — grid size must be a power of 2
o zoom (scalar) — linear scaling factor of input beam.
Variables
o wl (scalar) — the wavelength
e z (scalar) — current beam position along the z-axis (propagation axis). Initial
value is 0
o w0 (scalar) — pilot Gaussian beam waist. Initial value is beam_ diameter/2
e zw0 (scalar) — z-coordinate of the Gaussian beam waist. initial value is 0
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e zr (scalar) — Rayleigh distance: mw3/\

o rayleigh_factor (scalar) — Scale factor multiplying zr to determine ‘I’ and
‘O’ regions. Built in value is 2

e dx (scalar) — pixel sampling interval along x-axis

e dy (scalar) — pixel sampling interval along y-axis

o C (scalar) — curvature of the reference surface at beam position

o fratio (scalar) — pilot Gaussian beam f-ratio

o wfo (array [gridsize, gridsize], complez128) — the wavefront complex
array

o amplitude (array [gridsize, gridsize], float64) — the wavefront am-
plitude array

o phase (array [gridsize, gridsize], float64)— the wavefront phase ar-
ray in radians

e wz (scalar) — the Gaussian beam waist w(z) at current beam position

o distancetofocus (scalar) — the distance to focus from current beam position

o extent (tuple) — the physical coordinates of the wavefront bounding box (xmin,
xmax, ymin, ymax). Can be used directly in im.set__extent.

Returns
out
Return type
an instance of wfo

Example

>>> import paos

>>> import matplotlib.pyplot as plt

>>> beam_diameter = 1.0 # m

>>> wavelength = 3.0 # micron

>>> grid_size = 512

>>> zoom = 4

>>> xdec, ydec = 0.0, 0.0

>>> fig, (ax0, axl) = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
>>> wfo = paos.WF0(beam_diameter, 1.0e-6 * wavelength, grid_size, zoom)
>>> wfo.aperture(xc=xdec, yc=ydec, r=beam_diameter/2, shape='circular')
>>> wfo.make_stop()

>>> ax0.imshow(wfo.amplitude)

>>> wfo.lens(lens_f1=1.0)

>>> wfo.propagate(dz=1.0)

>>> ax1.imshow(wfo.amplitude)

>>> plt.show()

property wl

property z

property w0

property zwO

property zr

property rayleigh_factor

3.2. WFO (paos.classes.wfo)

75



https://docs.python.org/dev/library/stdtypes.html#tuple

PAOS Manual,

1.0.3.postl

property
property
property
property
property
property
property
property
property

property

dx

dy
C

fratio

wfo

amplitude

phase

Wz

distancetofocus

extent

make_stop()

Make current surface a stop. Stop here just means that the wf at current position is normalised
to unit energy.

aperture (zc, yc, ht=None, hy=None, r=None, shape='elliptical’, tilt=None, obscuration=False)

Apply aperture mask

Parameters

xc (scalar) — x-centre of the aperture

yc (scalar) — y-centre of the aperture

hx (scalars) — semi-axes of shape ‘elliptical’ aperture, or full dimension of
shape ‘rectangular’ aperture

hy (scalars) — semi-axes of shape ‘elliptical’ aperture, or full dimension of
shape ‘rectangular’ aperture

r (scalar) — radius of shape ‘circular’ aperture

shape (string) — defines aperture shape. Can be ‘elliptical’, ‘circular’, ‘rectan-
gular’

tilt (scalar) — tilt angle in degrees. Applies to shapes ‘elliptical” and ‘rectan-
gular’.

obscuration (boolean) — if True, aperture mask is converted into obscuration
mask.

insideout (z=None)

Check if z position is within the Rayleigh distance

Parameters

z (scalar) — beam coordinate long propagation axis
Returns

out — ‘T if |z — zyo| < 2, else ‘O’

Return type

string

lens(lens_f1)

Apply wavefront phase from paraxial lens

Parameters

lens_f1 (scalar) — Lens focal length. Positive for converging lenses. Negative
for diverging lenses.
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Note: A paraxial lens imposes a quadratic phase shift.

Magnification(My, Mz=None)

Given the optical magnification along one or both directions, updates the sampling along both
directions, the beam semi-diameter, the Rayleigh distance, the distance to focus, and the beam
focal ratio

Parameters
e My (scalar) — optical magnification along tangential direction
e Mx (scalar) — optical magnification along sagittal direction
Returns
out — updates the wfo parameters
Return type
None
ChangeMedium(nin2)

Given the ratio of refractive indices nl1/n2 for light propagating from a medium with refractive
index nl, into a medium with refractive index n2, updates the Rayleigh distance, the wavelength,
the distance to focus, and the beam focal ratio

Parameters
nin2 —
Returns
out — updates the wfo parameters
Return type
None
ptp(dz)
Plane-to-plane (far field) wavefront propagator
Parameters
dz (scalar) — propagation distance
stw(dz)
Spherical-to-waist (near field to far field) wavefront propagator
Parameters
dz (scalar) — propagation distance
wts(dz)
Waist-to-spherical (far field to near field) wavefront propagator
Parameters
dz (scalar) — propagation distance
propagate (dz)
Wavefront propagator. Selects the appropriate propagation primitive and applies the wf
propagation
Parameters
dz (scalar) — propagation distance
zernikes (index, Z, ordering, normalize, radius, offset=0.0, origin="t")
Add a WFE represented by a Zernike expansion

Parameters

3.2.

WFO (paos.classes.wfo) 7



PAOS Manual, 1.0.3.postl

e index (array of integers) — Sequence of zernikes to use. It should be a
continuous sequence.

e Z (array of floats) — The coefficients of the Zernike polynomials in meters.

o ordering (string) — Can be ‘ansi’, ‘noll’; ‘fringe’, or ‘standard’.

o normalize (bool) — Polynomials are normalised to RMS=1 if True, or to unity
at radius if False.

o radius (float) — The radius of the circular aperture over which the polynomials
are calculated.

o offset (float) — Angular offset in degrees.

e origin (string) — Angles measured counter-clockwise positive from x axis by
default (origin="x"). Set origin="y’ for angles measured clockwise-positive from
the y-axis.

Returns
out — the WFE
Return type
masked array

psd(A=10.0, B=0.0, C=0.0, fknee=1.0, fmin=None, fmaz=None, SR=0.0, units=Unit('m'))

Add a WFE represented by a power spectral density (PSD) and surface roughness (SR)
specification.

Parameters

e A (float) — The amplitude of the PSD.
B (float) — PSD parameter. If B = 0, the PSD is a power law.
C (float) — PSD parameter. It sets the slope of the PSD.

o fknee (float) — The knee frequency of the PSD.

e fmin (float) — The minimum frequency of the PSD.

o fmax (float) — The maximum frequency of the PSD.

e SR (float) — The rms of the surface roughness.

e units (astropy.units) — The units of the SFE. Default is meters.
Returns

out — the WFE
Return type

masked array

3.3 Zernike (paos.classes.zernike)

class Zernike (N, rho, phi, ordering="'ansi', normalize=False)

Bases: object
Generates Zernike polynomials

Parameters
o N (integer) — Number of polynomials to generate in a sequence following the
defined ‘ordering’
o rho (array like) — the radial coordinate normalised to the interval [0, 1]
e phi (array like) — Azimuthal coordinate in radians. Has same shape as rho.
o ordering (string) —
Can either be:
ANSI (ordering=’ansi’, this is the default); Noll (ordering='noll’). Used in
Zemax as “Zernike Standard Coeflicients”,
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R. Noll, “Zernike polynomials and atmospheric turbulence”, J. Opt. Soc. Am.,
Vol. 66, No. 3, p207 (1976);
Fringe (ordering=’fringe’), AKA the “Fringe” or “University of Arizona” no-
tation; Standard (ordering=’standard’). Used in CodeV, Born and Wolf,
Principles of Optics (Pergamon Press, New York, 1989).
o normalize (bool) — Set to True generates ortho-normal polynomials. Set to
False generates orthogonal polynomials as described in Laksminarayan & Fleck,
Journal of Modern Optics (2011). The radial polynomial is estimated using the
Jacobi polynomial expression as in their Equation in Equation 14.
Returns
out — An instance of Zernike.
Return type
masked array

Example

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> x = np.linspace(-1.0, 1.0, 1024)

>>> xx, yy = np.meshgrid(x, x)

>>> rho = np.sqrt(xx**2 + yy**x2)

>>> phi = np.arctan2(yy, xx)

>>> zernike = Zernike(36, rho, phi, ordering='noll', normalize=True)
>>> zer = zernike() # zer contains a list of polynomials, noll-ordered

>>> # Plot the defocus zernike polynomial
>>> plt.imshow(zer[3])
>>> plt.show()

>>> # Plot the defocus zernike polynomial
>>> plt.imshow(zernike(3))

>>> plt.show()

Note: In the example, the polar angle is counted counter-clockwise positive from the x axis. To
have a polar angle that is clockwise positive from the y axis (as in figure 2 of Laksminarayan &

Fleck, Journal of Modern Optics (2011)) use

[>>> phi = 0.5%np.pi - np.arctan2(yy, xx)

static j2mn(N, ordering)

Convert index j into azimuthal number, m, and radial number, n for the first N Zernikes

Parameters

e N (4integer)— Number of polynomials (starting from Piston)

e ordering (string) — can take values ‘ansi’, ‘standard’; ‘noll’, ‘fringe’
Returns

m, n
Return type

array

3.3.

Zernike (paos.classes.zernike)
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static mn2j(m, n, ordering)
Convert radial and azimuthal numbers, respectively n and m, into index j

cov()
Computes the covariance matrix M defined as

[>>> M[i, j] = np.mean(Z[i, ...1%Z[j, ...1) ]
When a pupil is defined as ® =} c[k]Z]k, ...], the pupil RMS can be calculated as
[>>> RMS = np.sqrt( np.dot(c, np.dot(M, c)) ) }
This works also on a non-circular pupil, provided that the polynomials are masked over the
pupil.

Returns

M - the covariance matrix
Return type
array

3.4 Core (paos.core)

3.4.1 parseConfig

getfloat (value)

parse_config(filename)

Parse an ini lens file

Parameters
filename (string) — full path to ini file
Returns
o pup__diameter (float) — pupil diameter in lens units
o parameters (dict) — Dictionary with parameters defined in the section ‘general’
of the ini file
o field (List) — list of fields
o wavelengths (List) — list of wavelengths
o opt__chain_ list (List) — Each list entry is a dictionary of the optical surfaces
in the .ini file, estimated at the given wavelength. (Relevant only for diffractive
components)

Examples

>>> from paos.core.parseConfig import parse_config
>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config(
—'path/to/ini/file')

3.4.2 coordinateBreak

coordinate_break (vt, vs, xdec, ydec, xrot, yrot, zrot, order=0)

Performs a coordinate break and estimates the new v; = (y,u,) and v; = (z, uy).
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Parameters
e vt (array) — vector v; = (y,uy) describing a ray propagating in the tangential
plane
e vs (array) — vector vy = (x,u,) describing a ray propagating in the sagittal
plane

e xdec (float

( — x coordinate of the decenter to be applied
o ydec (float

(

(

— y coordinate of the decenter to be applied
e xrot (float) — tilt angle around the X axis to be applied
e yrot (float) — tilt angle around the Y axis to be applied
o zrot (float) — tilt angle around the Z axis to be applied
o order (int) — order of the coordinate break, defaults to 0.
Returns
two arrays representing the new v = (y,u,) and 05 = (x, uy).
Return type
tuple

— — N

Note: When order=0, first a coordinate decenter is applied, followed by a XYZ rotation. Coordinate
break orders other than 0 not implemented yet.

3.4.3 raytrace

raytrace(field, opt chain, z=0.0, y=0.0)
Diagnostic function that implements the Paraxial ray-tracing and prints the output for each surface
of the optical chain as the ray positions and slopes in the tangential and sagittal planes.

Parameters
o field (dict) — contains the slopes in the tangential and sagittal planes as
field={‘vt’: slopey, ‘vs’: slopex}
o opt_chain (dict)—the dict of the optical elements returned by paos.parse_ config
e x (float) — X-coordinate of the initial ray position
o vy (float) — Y-coordinate of the initial ray position
Returns
out — A list of strings where each list item is the raytrace at a given surface.
Return type
list[str]

Examples

>>> from paos.core.parseConfig import parse_config

>>> from paos.core.raytrace import raytrace

>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config(
< 'path/to/conf/file')

>>> raytrace(fields[0], opt_chains[0])

3.4.4 run

push_results (wfo)
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run (pupil__diameter, wavelength, gridsize, zoom, field, opt_chain)

Run the POP.

Parameters
o pupil_diameter (scalar) — input pupil diameter in meters
o wavelength (scalar) — wavelength in meters
o gridsize (scalar) — the size of the simulation grid. It has to be a power of 2
o zoom (scalar) — zoom factor
o field (dictionary) — contains the slopes in the tangential and sagittal planes
as field={‘vt’: slopey, ‘vs’: slopex}
o opt_chain (list) — the list of the optical elements parsed by
paos.core.parseConfig.parse_ config
Returns
out — dictionary containing the results of the POP
Return type
dict

Examples

.

>>> from paos.core.parseConfig import parse_config

>>> from paos.core.run import run

>>> from paos.core.plot import simple_plot

>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config(

< 'path/to/conf/file')

>>> ret_val = run(pup_diameter, 1.0e-6 * wavelengths[0], parameters['grid_size'],
< parameters['zoom'], fields[0], opt_chains[0])

3.4.5

plot

do_legend (azis, ncol=1)

Create a nice legend for the plots

Parameters
o axis (Axes) — An instance of matplotlib axis
e ncol (4nt) — The number of legend columns
Returns
out — Produces a nice matplotlib legend
Return type
None

simple_plot (fig, axis, key, item, ima__scale, origin="lower', cmap="viridis', options={})

Given the POP simulation output dict, plots the squared amplitude of the wavefront at the given
optical surface.

Parameters
o fig (Figure) — instance of matplotlib figure artist
o axis (Axes) — instance of matplotlib axes artist
o key (int) — optical surface index
o item (dict) — optical surface dict
o ima_scale (str) — plot color map scale, can be either ‘linear’ or ‘log’
o origin (str) — matplotlib plot origin. Defaults to ‘lower’
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o cmap (str) — matplotlib plot color map. Defaults to ‘viridis’

o options (dict) — dictionary containing the options to override the plotting
default for one or more surfaces, specified by the dictionary key. Available options
are the surface scale, an option to display physical units, the surface zoom(out),
the plot scale and whether to plot dark rings in correspondance to the zeros of
the Airy diffraction pattern. Examples: 0) options={4: {‘ima_ scale’:’linear’}}
1) options={4: {‘surface_scale’:60, ‘ima_ scale’:’'linear’}} 2) options={4: {‘sur-
face scale’:21, ‘pixel units:True, ‘ima_scale’:’linear’}} 3) options={4: {‘sur-
face__zoom’:2, ‘ima_ scale’’log’, ‘dark_ rings’: False}}

Returns

updates the Figure object
Return type

None

Examples

>>> from paos.core.parseConfig import parse_config

>>> from paos.core.run import run

>>> from paos.core.plot import simple_plot

>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config(
—'path/to/ini/file")

>>> ret_val = run(pup_diameter, 1.0e-6 * wavelengths[0], parameters['grid size'],
>>> parameters['zoom'], fields[0], opt_chains[0])

>>> from matplotlib import pyplot as plt

>>> fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))

>>> key = list(ret_val.keys())[-1] # plot at last optical surface

>>> item = ret_val [key]

>>> simple_plot(fig, ax, key=key, item=item, ima_scale='log')

>>> plt.show()

plot_pop (retval, ima__scale="log', ncols=2, figname=None, options={})

Given the POP simulation output dict, plots the squared amplitude of the wavefront at all the
optical surfaces.

Parameters
o retval (dict) — simulation output dictionary
o ima_scale (str) — plot color map scale, can be either ‘linear’ or ‘log’
e ncols (¢nt) — number of columns for the subplots
o figname (str) — name of figure to save
o options (dict) — dict containing the options to display the plot: axis scale, axis
unit, zoom scale and color scale. Examples: 0) options={4: {‘ima_scale’:'linear’}}
1) options={4: {‘surface scale’:60, ‘ima_ scale’:’linear’}} 2) options={4: {‘sur-
face_scale’:21, ‘pixel__units’:True, ‘ima_ scale’:’linear’}} 3) options={4: {‘sur-
face_zoom’:2, ‘ima_ scale’:’log’}}
Returns
out — displays the plot output or stores it to the indicated plot path
Return type
None
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Examples

>>> from paos.core.parseConfig import parse_config

>>> from paos.core.run import run

>>> from paos.core.plot import plot_pop

>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config(

< 'path/to/ini/file"')

>>> ret_val = run(pup_diameter, 1.0e-6 * wavelengths[0], parameters['grid size'],
>>> parameters['zoom'], fields[0], opt_chains[0])

>>> plot_pop(ret_val, ima_scale='log', ncols=3, figname='path/to/output/plot"')

plot_psf_xsec(fig, axis, key, item, ima_ scale='"linear', x_units='standard’', surface zoom=1)

Given the POP simulation output dict, plots the cross-sections of the squared amplitude of the
wavefront at the given optical surface.

Parameters
o fig (Figure) — instance of matplotlib figure artist
o key (int) — optical surface index
o item (dict) — optical surface dict
o ima_scale (str) — y axis scale, can be either ‘linear’ or ‘log’
e x_units (str) — units for x axis. Default is ‘standard’, to have units of mm or
microns. Can also be ‘wave’, i.e. Displacement/(FpumA).
o surface_zoom (scalar) — Surface zoom: more increases the axis limits
Returns
out — updates the ~matplotlib.figure. Figure object
Return type
None

Examples

>>> import matplotlib.pyplot as plt

>>> from paos.core.parseConfig import parse_config

>>> from paos.core.run import run

>>> from paos.core.plot import plot_psf_xsec

>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config('/
—path/to/config/file')

>>> wl_idx = O # choose the first wavelength

>>> wavelength, opt_chain = wavelengths[wl_idx], opt_chains[wl_idx]

>>> ret_val = run(pup_diameter, 1.0e-6 * wavelength, parameters['grid_size'l],,
—parameters['zoom'],

>>> fields[0], opt_chain)

>>> key = list(ret_val.keys())[-1] # plot at last optical surface

>>> fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(16, 8))

>>> plot_psf_xsec(fig=fig,axis=ax,key=key,item=ret_val[key],ima_scale='log',x_
—units='wave')

plot_surface (key, retval, ima__scale, origin="lower', zoom=1, figname=None)

Given the optical surface key, the POP output dictionary and the image scale, plots the squared
amplitude of the wavefront at the given surface (cross-sections and 2D plot)

Parameters
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o key (int) — the key index associated to the optical surface
o retval (dict) — the POP output dictionary
o ima_scale (str) — the image scale. Can be either ‘linear’ or ‘log’
o origin (str) — matplotlib plot origin. Defaults to ‘lower’
o zoom (scalar) — the surface zoom factor: more increases the axis limits
o figname (str) — name of figure to save
Returns
out — the figure with the squared amplitude of the wavefront at the given surface
Return type
Figure

3.4.6 saveQOutput

remove_keys (dictionary, keys)

Removes item at specified index from dictionary.

Parameters
o dictionary (dict) — input dictionary
e keys — keys to remove from the input dictionary
Returns
Updates the input dictionary by removing specific keys
Return type
None

Examples

>>> from paos.core.saveOutput import remove_keys
>>> my_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> print(my_dict)

>>> keys_to_drop = ['a', 'c', 'e']

>>> remove_keys(my_dict, keys_to_drop)

>>> print(my_dict)

save_recursively_to_hdf5 (dictionary, outgroup)

Given a dictionary and a hdf5 object, saves the dictionary to the hdf5 object.

Parameters
o dictionary (dict) — a dictionary instance to be stored in a hdf5 file
e outgroup — a hdf5 file object in which to store the dictionary instance
Returns
Save the dictionary recursively to the hdf5 output file
Return type
None

save_info (file_name, out)

Inspired by a similar function from ExoRad2. Given a hdf5 file name and a hdf5 file object, saves
the information about the paos package to the hdf5 file object. This information includes the file
name, the time of creation, the package creator names, the package name, the package version, the
hdfb package version and the h5py version.

Parameters
o file_name (str) — the hdf5 file name for saving the POP simulation
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e out — the hdf5 file object
Returns
Saves the paos package information to the hdf5 output file
Return type
None

save_retval (retval, keys to_keep, out)

Given the POP simulation output dictionary, the keys to store at each surface and the hdf5 file
object, it saves the output dictionary to a hdf5 file.

Parameters
o retval (dict) — POP simulation output dictionary to be saved into hdf5 file
o keys_to_keep (list) — dictionary keys to store at each surface. example: [‘am-
plitude’, ‘dx’, ‘dy’]
o out (~hdpy.File) — instance of hdf5 file object
Returns
Saves the POP simulation output dictionary to the hdf5 output file
Return type
None

save_output (retval, file_name, keys_to_keep=None, overwrite=True)
Given the POP simulation output dictionary, a hdf5 file name and the keys to store at each surface,
it saves the output dictionary along with the paos package information to the hdf5 output file. If
indicated, overwrites past output file.

Parameters
o retval (dict) — POP simulation output dictionary to be saved into hdf5 file
o file_name (str) — the hdf5 file name for saving the POP simulation
o keys_to_keep (list) — dictionary keys to store at each surface. example: [‘am-
plitude’, ‘dx’, ‘dy’]
o overwrite (bool) — if True, overwrites past output file
Returns
Saves the POP simulation output dictionary along with the paos package information
to the hdf5 output file
Return type
None

Examples

>>> from paos.core.parseConfig import parse_config

>>> from paos.core.run import run

>>> from paos.core.saveOutput import save_output

>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config(
—'path/to/ini/file')

>>> ret_val = run(pup_diameter, 1.0e-6 * wavelengths[0], parameters['grid size'],
>>> parameters['zoom'], fields[0], opt_chains[0])

>>> save_output(ret_val, 'path/to/hdf5/file', keys_to_keep=['wfo', 'dx', 'dy'l,,
—overwrite=True)

save_datacube (retval list, file_name, group_names, keys to_keep=None, overwrite="True)

Given a list of dictionaries with POP simulation output, a hdf5 file name, a list of identifiers to tag
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each simulation and the keys to store at each surface, it saves the outputs to a data cube along
with the paos package information to the hdf5 output file. If indicated, overwrites past output file.

Parameters
o retval_list (list) — list of dictionaries with POP simulation outputs to be
saved into a single hdfb file
o file_name (str) — the hdf5 file name for saving the POP simulation
o group_names (list) — list of strings with unique identifiers for each POP sim-
ulation. example: for one optical chain run at different wavelengths, use each
wavelength as identifier.
o keys_to_keep (list) — dictionary keys to store at each surface. example: [‘am-
plitude’, ‘dx’, ‘dy]
o overwrite (bool) — if True, overwrites past output file
Returns
Saves a list of dictionaries with the POP simulation outputs to a single hdf5 file as a
datacube with group tags (e.g. the wavelengths) to identify each simulation, along
with the paos package information.
Return type
None

Examples

>>> from paos.core.parseConfig import parse_config

>>> from paos.core.run import run

>>> from paos.core.saveOutput import save_datacube

>>> from joblib import Parallel, delayed

>>> from tqdm import tqgdm

>>> pup_diameter, parameters, wavelengths, fields, opt_chains = parse_config(
—'path/to/ini/file"')

>>> ret_val_list = Parallel(n_jobs=2) (delayed(run) (pup_diameter, 1.0e-6 * wl,
—parameters['grid size'],

>>> parameters['zoom'], fields[0], opt_chains[0]) for wl in
—tqdm(wavelengths))

>>> group_tags = list(map(str, wavelengths))

>>> save_datacube(ret_val_list, 'path/to/hdf5/file', group_tags,

>>> keys_to_keep=['amplitude', 'dx', 'dy'], overwrite=True)

3.4.7 pipeline

pipeline (passvalue)

Pipeline to run a POP simulation and save the results, given the input dictionary. This pipeline
parses the lens file, performs a diagnostic ray tracing (optional), sets up the optical chain for the
POP run automatizing the input of an aberration (optional), runs the POP in parallel or using a
single thread and produces an output where all (or a subset) of the products are stored. If indicated,
the output includes plots.

Parameters
passvalue (dict) — input dictionary for the simulation

Returns
If indicated, returns the simulation output dictionary or a list with a dictionary for
each simulation. Otherwise, returns None.
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Return type
None or dict or list of dict

Examples

>>> from paos.core.pipeline import pipeline

>>> pipeline(passvalue={'conf': 'path/to/conf/file’,

>>> 'output': 'path/to/output/file’,
>>> 'plot': True,

>>> 'loglevel': 'debug',

>>> 'n_jobs': 2,

>>> 'store_keys': 'amplitude,dx,dy,wl',
>>> 'return': Falsel})

3.5 GUI (paos.gui)

3.56.1 paosGui
3.5.2 simpleGui

3.5.3 zernikeGui
3.6 Material (paos.util.material)

class Material (wl, Tambient=-218.0, Pambient=1.0, materials=None)

Bases: object
Class for handling different optical materials for use in PAOS

Parameters
o Tambient (scalar) — Ambient temperature during operation (°C')
o Pambient (scalar) — Ambient pressure during operation (atm)
e wl (scalar or array)— wavelength in microns
o materials (dict) — library of materials for optical use

sellmeier(par)

Implements the Sellmeier 1 equation to estimate the glass index of refraction relative to air at
the glass reference temperature 7.y = 20°C and pressure Py = 1 atm.

. ) . . 9 K1 )\? K)\?
The Sellmeier 1 equation consists of three terms and is given as n“(\) = 1+ + +
N —Li N—1Ly
K3\?
A2 — Ls
Parameters

par (dict) — dictionary containing the Ky, L1, Ko, Lo, K3, L3 parameters of the
Sellmeier 1 model
Returns
out — the refractive index
Return type
scalar or array (same shape as wl)
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static nT(n, DO, delta_T)

Estimate the change in the glass absolute index of refraction with temperature as

n(AT) = Angps +n

where
Angps = 22 Dy AT
Nabs = —5, 0
Parameters

e n(scalar or array) - relative index at the reference temperature of the glass

e DO (scalar) — model parameter (constant provided by the glass manufacturer
to describe the glass thermal behaviour)

o delta_T (scalar) — change in temperature relative to the reference temperature
of the glass. It is positive if the temperature is greater than the reference
temperature of the glass

Returns

out — the scaled relative index
Return type

scalar or array (same shape as n)

nair (T, P=1.0)
Estimate the air index of refraction at wavelength A, temperature 7', and relative pressure P as

. (nTef—l)P
Nair = 1 + 1577 15).3ar85x10-9)

where

_ 29498102 255402 -8
= . i & A
Npep =1+ [64328+ 4981007 2534007

This formula for the index of air is from F. Kohlrausch, Praktische Physik, 1968, Vol 1, page
408.

Parameters
e T (scalar) — temperature in °C
e P (scalar) — relative pressure in atmospheres (dimensionless in the formula).
Defaults to 1 atm.
Returns
out — the air index of refraction
Return type
scalar or array (same shape as wl)

Note:

1) Air at the system temperature and pressure is defined to be 1.0, all other indices are
relative
2) PAQS can easily model systems used in a vacuum by changing the air pressure to zero

nmat (name)

Given the name of an optical glass, returns the index of refraction in vacuum as a function of
wavelength.

Parameters
name (str) — name of the optical glass
Returns
out — returns two arrays for the glass index of refraction at the given wavelengths:
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the index of refraction at T;..y = 20°C (nmat0) and the index of refraction at T}y,
(nmat)

Return type
tuple(scalar, scalar) or tuple(array, array)

plot_relative_index(material list=None, ncols=2, figname=None)

Given a list of materials for optical use, plots the relative index in function of wavelength, at
the reference and operating temperature.

Parameters
o material_list (list) — a list of materials, e.g. [‘SF11’, ‘“ZNSE’]
e ncols (4nt) — number of columns for the subplots
o figname (str) — name of figure to save
Returns
out — displays the plot output or stores it to the indicated plot path
Return type
None

Examples

>>> from paos.util.material import Material
>>> Material(wl = np.linspace(1.8, 8.0, 1024)).plot_relative_index(material_
—list=['Caf2', 'Sf11', 'Sapphire'])

3.7 Logger (paos.log.logger)

class Logger

Bases: object
Abstract class

Standard logging using logger library. It’s an abstract class to be inherited to load its methods for
logging. It define the logger name at the initialization, and then provides the logging methods.
set_log_name ()
Produces the logger name and store it inside the class. The logger name is the name of the
class that inherits this Logger class.
info(message, *args, **kwargs)
Produces INFO level log See logging.Logger
warning (message, *args, **kwargs)
Produces WARNING level log See logging.Logger
debug (message, *args, **kwargs)
Produces DEBUG level log See logging.Logger
trace (message, *args, **kwargs)
Produces TRACE level log See logging.Logger
error (message, *args, **kwargs)

Produces ERROR level log See logging.Logger
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critical (message, *args, **kwargs)

Produces CRITICAL level log See logging.Logger
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Chapter 4

License

BSD 3-Clause License
Copyright (c) 2022, arielmission-space All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
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Chapter 5

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog (keepachangelog), and this project adheres to Semantic

Versioning (semver).

5.1 [Unreleased]
5.1.1 0.0.2 [15/09/2021]

Setting up new PAOS repository

5.1.2 0.0.2.1 [20/10/2021]

First documented PAQS release

5.1.3 0.0.3 [23/12/2021]
5.1.3.1 Added

o Added support for optical materials

5.1.4 0.0.4 [22/01/2022]
5.1.4.1 Changed

e Changed configuration file to .ini

5.1.5 1.0.0 [01/07/2023]

PAOS production ready
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